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Abstract 

An analytical model is developed to describe the 

response of the "joggle-lap" joint to both tensile and 

bending loads.  The model consists of a non-linear beam 

analysis which calculates stress profiles through the 

adherent thickness.  A plane stress finite-element model 

was incorporated into the analysis to correctly determine 

the stress field in the adhesive zone where it was shown 

that beam analysis was less accurate.  Elastic response of 

the "joggle-lap" joint due to tensile loads was verified 

through experimental testing and ultimate loads were 

accurately predicted within experimental error.  Maximum 

adherent flexural stress was found to determine joint 

failure.  A parametric study was undertaken by using the 

verified analytical model and the results were recorded as 

a series of design curves. 
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I.  Introduction 

Recent government regulations for increased 

gasoline mileage requirements have induced automobile 

manufacturers to seek light weight replacement material 

systems for existing metal parts.  Since the automotive 

industry is a high volume operation, sheet molding compound 

(SMC) parts offer a feasible answer to the problem.  The 

SMC molding time of from 1 to 3 min/piece depending on the 

size and thickness of the part is compatible with auto- 

motive assembly line production. 

International Harvester et al are currently 

employing SMC molded body components on their vehicles to 

replace former sheet metal parts.  This new direction has 

brought with it several problems, one of which is the 

design of adhesive joints.  The joint must accommodate 

high rate fabrication techniques and provide optimum 

strength and durability.  In addition, the joint must 

satisfy certain cosmetic requirements such as adjacent . 

flush edges.  With these criteria in mind, the "joggle- 

lap" joint has been chosen for detailed study and analysis. 

This joint configuration is shown in Figure 1.  Since a 

joint of this type experiences a variety of loading 

conditions in practice, it was decided to model the joint 

-1- 
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in pure tension and pure bending.  By superposition, it is 

apparent that any combination of these two loading conditions 

may then be constructed. 

This work focuses on the development of an analytical 

model to describe the behavior of the "joggle-lap" joint 

due to both tensile and bending loading conditions.  The 

first section utilizes small deflection beam theory for 

both straight and curved beam elements to obtain a solution 

for the displacement and stress fields of the joint. 

Included in this analysis is the derivation of the governing 

differential equations for the deflection of the curved 

beam. 

The second section utilizes a finite-element model 

to reveal localized stress concentrations in the adhesive 

zone.  Boundary conditions for the finite element model are 

obtained from a transformation of stresses in the deformed 

geometry to equivalent stresses in the undeformed geometry. 

This transformation of stresses is performed via a computer 

routine for ease of calculation. 

Finally, experimental verification of the analytical 

predictions is reported along with a description of testing 

procedures.  The maximum flexural stress is shown to correlate 

strength data and failure analysis.  Also, the microstructure 

of the joint was examined as a possible explanation of the 

failure mode. 



II.  Background 

A.  Adherent Materials 

The adherents of the proposed "joggle-lap" joint 

were composed of a random-fiber composite known as SMC-25. 

SMC is defined as a sheet molding compound that contains 

reinforcements with an average fiber length of approximately 

1 inch (2.54 cm) with random orientation in the plane.  The 

number 25 indicates that the composite is 25 percent glass 

fibers by weight.  The major constituents of SMC are E-glass 

fibers and a styrenated polyester resin in the form of a 

paste.  It is quite common to use mineral fillers during 

the manufacture of the paste to facilitate flow when molding 

or to obtain certain characteristics from the molded part 

such as a high resistance to flame or increased stiffness. 

Another prime reason for using fillers is the fact that they 

are much cheaper than the polyester resin itself and thus 

reduce the cost of materials. At times, chemical additives 

may also be introduced into the paste to serve as catalysts 

during the molding cycle. 

The process of SMC manufacturing is a highly 

innovative one which is completely automated.  Figure 2 

(taken from Owens/Corning Fiberglass SMC Review) depicts 

-4- 
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a typical process currently in use by a competitive supplier 

of SMC.  The first step of the procedure is to distribute 

the resin onto a polyethylene carrier film as shown.  Con- 

tinuous glass fibers are then chopped into lengths of less 

than three inches and distributed in a random fashion on 

the wetted film.  A second layer of resin-coated polyethylene 

film serves as a top layer to the sandwich-like sheet. 

Several rows of rollers act to insure that the glass fibers 

are fully impregnated with the polyester resin thus yielding 

consistency in moldability of the SMC.  Finally the product 

is directed to a take-up roll for ease of handling during 

shipping and storage. 

SMC is usually placed in a constant temperature room 

while storing to allow maturation to take place. Maturation 

is nothing more than allowing the SMC to increase 



in viscosity to enhance relative ease of handling of the 

sheet. Maturing the SMC sheet for extended periods of 

time greatly reduces the flow characteristics of the 

product while molding.  Recommended shelf-life for SMC 

stored at 10-15° C is about 2 weeks, however in general 

it may often be used up to 2 months after the date of its 

manufacture. 

Once the SMC sheet has reached maturity, it is 

ready for molding.  Upon removing the protective poly- 

ethylene film, the molding compound is cut to size and 

strategically placed in the mold.  This procedure is 

known as charging the mold.  The so-called strategic 

locations of the mold are those positions that allow the 

SMC to flow to all parts of the mold and maintain uni- 

form part thickness.  To date these locations have been 

determined by trial and error coupled with experience. 

Compression molding combines both temperature and 

pressure to induce an exothermic reaction which serves to 

cure the part in the mold.  Figure 3 (taken from ref [3]) 

is an example of a typical curing cycle showing the 

temperature of the part as a function of time.  It should 

be noted that platen temperatures of 200° C are usually 

sufficient for SMC molding and may be achieved with super- 

heated steam.  Another important fact seen from the figure 

is the overall cure time.  Average cure times are generally 
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1-3 minutes (depending upon the thickness of the part) 

which lends itself to production line applications 

inherent in the automotive industry.  Figure 4 (taken 

from ref 13]) shows the effect of pressure upon a typical 

cure cycle.  Note that the peak pressure and maximum 

temperature correspond to the initiation of the exothermic 

reaction.  The key to successful molding is to acquire 

fine control of the application of pressure to the cure 

cycle. 

The main feature of SMC is the ability of the glass 

fibers to flow with the paste during the molding process. 

Since the fibers are transported to all parts of the mold, 

it is possible to produce a geometrically complicated part 

with quasi-constant mechanical properties.  It has been 

shown by Pipes and Taggart [ref 5], that in areas of 

intensified flow, the fibers tend to align themselves with 

the direction of flow and thus produce areas of varying 

mechanical properties.  It is therefore beneficial to under- 

stand the flow characteristics within the mold to produce 

a part with controlled and/or uniform mechanical properties, 

Taggart et al have determined the properties of SMC-25 to 

be those found in Table 1.  Some scattering in the data 

was reported due to the inherent local variations in the 

material.  To determine the normal modulus (modulus normal 

to the plane of the fibers), the relationship shown may be 
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Table 1 

Properties of SMC-25 

Tension 

E tension 

v tension 

tension 
ult 

.tension 
"ult 

GPa (Msi) 

MPa (ksi) 

(y in/in) 

14.48 

90 

(2.1) 

.3 

(13.1) 

11,400 

Compression 

„compression 

L 

v compression 

compression 
ult 

.compression 
"ult 

GPa (Msi) 

MPa (ksi) 

(y in/in) 

12.41 

204 

(1.8) 

.28 

(29.6) 

20,600 
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used.  This . relationship resembles the well-known rule of 

mixtures for continuous fibrous composites. 

i   • v.-    V 
1     f +  m                         (1) 
E    -E,     E n    f     m 

where  E = n normal modulus of elasticity of the composite 

vf = volume fraction of fiber 

vm - volume fraction of matrix 

Ef " modulus of glass fiber 

Em = modulus of matrix 

Table 2 provides the needed data for determining the 

normal modulus of elasticity.  By definition, SMC is composed 

Table 21 

polyester resin   E-glass fiber 

Modulus of Elasticity 

(106 psi)                           .5             10 

Specific gravity                       1.28            2. 54 

of 25% fiber by weight.  Utilizing the equation written below 

r   m (2) 
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allows one to solve for vf where v may be rewritten as 

vm = vf [-S-]        I-W7"J 

m       r 

Sf = specific gravity of fiber 

S = specific gravity of matrix 

W = weight fraction of matrix m 

Wf = weight fraction of fiber 

Making the appropriate substitutions, Eq. (2) becomes 

75- [ 244 j 
25 l   1.28 J vf   vf 

Thus the corresponding volume fraction of fiber and matrix 

are .14 and .86 respectively.  From Eq. (1) the value of En 

is now calculated to be 0.5 8 x 10 psi. 

Vinson and Chou 



B.  Adhesive Materials 

The adhesive system chosen for the "joggle-lap" 

joint was developed by the Adhesives Division of Goodyear 

Chemicals.  The Pliogrip 6000 series is a general purpose 

structural adhesive with a polyurethane base.  Currently 

available as a two-part system, Pliogrip 6000 exhibits 

both high flexibility and resilience.  With the proper 

selection of curatives, the working time of the adhesive 

may be accurately controlled between 1-6 minutes. 

In order to utilize this adhesive system only 

minimal surface preparation is necessary.  The two surfaces 

to be bonded are prepared with a plastic wash primer 

(Pliogrip 6033/6034 Wash Primer) that is applied with a 

cloth.  No sand blasting or surface stripping is necessary. 

To maintain reliably bonded parts, Pliogrip 6000 must be 

mixed at a precise ratio of 4 parts resin to 1 part curative 

by weight or volume.  Deviations from this standard will 

yield resin-rich areas of uncured adhesive.  The actual 

mixing of the two components must be carried out without 

the introduction of air into the system, thus the need for 

specialized equipment.  Without this precaution, entrapped 

air bubbles in the cured adhesive would yield voids and 

greatly affect the performance of the bond.  Curing this 

adhesive system can be accomplished at room temperature, 

however the use of heated fixtures will reduce cure times. 

-13- 
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Recommended clamping pressures of heated fixtures range from 

20 to 40 psi. 

An important criterion in the design of bonded joints 

is that of the adhesive thickness.  It has been shown that 

adhesive properties vary inversely with adhesive thickness. 

Thus the bulk properties of the adhesive are distinctly 

different from those in the film state.  So the question is 

posed as to the optimum bond thickness as a function of shear 

strength.  Figure 5 (taken from Pliogrip technical data, 

Goodyear Adhesives) shows the effect of glue line thickness 

on bond joint strength.  A bond line thickness of 0.030 

inches was chosen as optimal even though thicknesses less 

than 0.030 inches yield greater bond strengths.  It was felt 

that bonding thicknesses less than 0.030 inches are not 

capable of being fabricated with consistency under production 

operations.  (i.e. molded FRP parts will inherently not fit 

together with reliable precision). 

To achieve uniform bond lines, one of two procedures 

is generally used.  Adherents may have a small raised button 

of 0.030 inches in thickness which acts as a spacer for the 

joint to insure a uniform bond.  Another procedure is to 

introduce small glass spheres (0.030 inches dia.) directly 

into the adhesive to achieve similar spacing.  The effect of 

these spheres on joint strength has not been determined but 

it is argued that the variation from the norm is negligible. 
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III.  Methods of Analysis 

A.  Tensile Loading 

a.  Beam Model 

Recently, Adkins [ref 2]   investigated the response 

of a scarf joint to simple tensile loadings.  It was found 

that the scarf joint exhibits flexural deformation under 

tensile loading due to the misalignment between the neutral 

surface and the loading axis.  This eccentricity induces a 

moment distribution along the joint (see Figure 9) which 

acts to align the neutral surface with the loading axis. 

The analysis of the "joggle-lap" joint, shown 

previously in Figure 1, is an extension of the concept 

discussed above.  Again it is clear that under tension 

the joint will experience a lateral deflection as the 

neutral axis attempts to align with the applied force.  To 

analyze the joint behavior under tensile loading conditions, 

it was decided to divide the joint into five segments.  The 

obvious places to divide the joint are illustrated in 

Figure 6 along with the corresponding identifying labels and 

global coordinate system.  Reference to beam segments via 

their identifying numbers will be utilized throughout the 

remainder of this analysis. 

In general, the goal of the analysis will be to 

determine the displacements of the neutral axis as measured 

perpendicularly from the undeformed neutral surface.  Once 

-16- 
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the deflections are known, one may calculate a moment 

distribution along the joint and thus determine the stress 

distribution at any given cross-section. 

The initial intention of such an investigation was 

to develop a closed form solution for the stresses within 

the joint.  This effort was soon thwarted by the non-linearities 

encountered in the governing equations for the beam elements. 

These non-linearities result from a coupling between the 

moment and deflection solutions, as will be evident later. 

As an alternative solution, the displacement field was 

obtained via numerical integration routines. 

Linear elastic beam theory states that for a beam 

under general loading conditions, the local radius of 

curvature is given by 

R -  El (3) 

where    R = radius of curvature 

E = modulus of elasticity 

I = moment of inertia about the neutral surface 

M = applied moment 

The radius of curvature may be written in terms of 

the lateral deflection as given by Eq. (4) 

si 
1 _   dx2 (4) 

[1 + (g)2l3/2 
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Realizing that under the assumptions made with regard 

to small deflection theory, the term (g£l  will be negligible 

when compared to unity.  Thus one arrives at the governing 

equation for straight beam elements. 

d2y   M 
2  =   (5) dx^   El 

Since the material system is relatively stiff, it is assumed 

that small deflection beam theory will yield sufficiently 

accurate results.  Thus, one may write a governing differential 

equation for each segment of the joint.  By matching boundary 

conditions of deflection and slope at each interface, the 

deflection of the entire joint may be obtained as a function 

of distance along the neutral axis.  Details of the analysis 

may be referenced in Appendix B. 

To enhance one's understanding of the joint behavior 

under applied tensile loadings, Figures 7 through 10 show 

deflection, slope, moment, and shear diagrams respectively 

at a load of 200 lbs.  Many of the discontinuities found 

in the plots arise from a shift in the neutral axis which is 

a common occurrence among lap joints. 

It was stated previously that analyzing the "joggle- 

lap" joint under tension was a non-linear problem.  This was 

seen by the fact that the moment was a function of the 

deflection.  Another way to view the non-linearities of the 
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joint behavior is to investigate the response of the joint 

to varying tensile loads.  Figures 11 and 12 provide a 

clear indication of the deviation from linearity even for 

small values of load.  Both the deflection (Figure 11) and 

moment (Figure 12) were recorded at the beginning of SEG3. 

(i.e. S3 = 0) 
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b.  Finite Element Model (tension) 

Anticipating the shortcomings of a beam bending 

model in the adhesive zone, defined to be the area of actual 

bonding, it was decided to model this area using finite- 

element methods.  One of the underlying assumptions of small 

deflection beam theory is that plane sections remain plane 

during pure bending action.  Clearly the validity of this 

assumption is questionable in the bonded area.  Another 

reason for employing the finite element technique was to 

uncover any local stress concentrations that may not be 

revealed in a beam analysis.  The finite-element mesh, 

consisting of 7 material types, is shown in Figure 13. 

Boundary conditions in the form of concentrated loads were 

applied to each of the finely meshed ends.  Loading conditions 

were applied away from the adhesive layer at a distance of 

1.5 times the thickness in an effort to minimize the effects 

of the end loads upon the stress solution.  An explanation 

of how these boundary conditions were determined will follow 

shortly.  A plane stress analysis was utilized to calculate 

the displacement and stress fields.  Figures 15 through 17 

are the result of a plotting routine which displays lines 

of constant stress.  The figures should be interpreted in the 

same manner as that of a topographical map.  Adjacent lines 

spaced closely together indicate areas of high stress 

gradients and possible sites for structural failure.  The 

-26- 
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figures are labeled according to the component of stress 

being displayed.  All three plots are the result of loading 

the specimen at the tensile failure load and are representative 

of the deformed geometry. 

The limitations of the beam bending model are 

clearly displayed in Figure 15 and reveal the justification 

for the finite-element model.  Shown in the figure is a 

smooth transition of stress across a change in cross-sectional 

area, (i.e. shift of the neutral axis) as calculated by the 

finite-element method.  Experimental results have shown 

this to be a 'correct representation of the stresses.  Beam 

analysis would have shown a sharp discontinuity in the stress 

profile where such a shift in the neutral axis occurs.  Since 

the moment is nearly constant throughout SEG4 (see Figure 9) 

beam analysis would calculate a, stress contours parallel 

to the adhesive layer.  The a,, a,, and t-^ stress components 

are global oriented stresses as opposed to those that can vary 

according to element orientation.  Marked on each figure 

are those areas where the assumptions made via beam analysis 

quite appreciably affect the accuracy of a correct solution. 

Many analyses of lap joints assume a condition of 

constant shear stress in the adhesive layer itself.  This 

would indeed be the case if the adherents were infinitely 

stiff as compared to the adhesive and also if the existence 

of a load transfer area was prohibited.  Shear stress data 
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from the finite element model is plotted in Figures 18 and 19 

and the indication is clear that the shear stress is not a 

constant in the load transfer area.  The case of constant 

shear stress found toward the center of the adhesive zone, 

however, reveals the linear nature of the displacement 

function through the adhesive thickness in this area. 
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Boundary Conditions for the Finite-Element Jtodel 

The boundary conditions for the finite-element model 

are determined by applying the stress distribution as directed 

by the beam bending model to the finely meshed ends of the 

undeformed geometry of the finite element model.  In other 

words, the stresses in the deformed geometry (beam model) 

must be moved through a distance to their equivalent point 

of application in the undeformed geometry (finite-element 

model).  The reason for this difficulty with boundary 

conditions is that we are currently utilizing a linearized 

2 finite element routine, SAP V , to solve a non-linear problem. 

Justification of such a procedure will hopefully become 

lucid with time. 

To facilitate the derivation of a transformation 

routine, Figures 20 and 21 illustrate the following sign 

conventions.  Figure 20 depicts a stress distribution for 

the left hand face of the finite element model with 

tension being taken as positive and compression being 

negative.  Note that the neutral axis is not coincident 

with the centroidal axis inherent in the analysis of a 

curved beam.  As mentioned previously, this fact yields a 

hyperbolic stress distribution which slightly complicates 

the computations.  (SEE derivations of governing equation 

for stresses in a curved beam, Appendix A) 

2 
Structural Analysis Program V; University of Southern 

California, Department of Civil Engineering, Oct. 77. 
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FIGURE   21:      SIGN  CONVENTION 
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Figure 21 reveals a planar view of the deformed 

and undeformed sections.  It is assumed in this derivation 

that the section of the beam can at most undergo a trans- 

lation and a rotation.  Translations are measured via the 

parameter DEFLA and are positive radially outward as shown. 

Small deflection theory also allows the rotations to be 

written as a change in slope.  This parameter is DUDSA and 

is positive counter-clockwise. 

With these sign conventions clearly in mind the 

stress distribution of the deformed geometry may now be 

resolved into concentrated force components.  Representing 

the hyperbolic stress distribution as equivalent point 

forces and point couples acting at nodal points labeled 

1 through 5 on Figure 21 corresponds mathematically to an 

integration of the stress distribution between fixed limits. 

F . = — /hi  =H_ du + /hi  F cos (6 + DUDSA) du   (6! 
u a h._1 h._1 

where    i = 1-5 

F . = nodal force component 

M = moment 

ü = distance between neutral and centroidal axes 

a = cross-sectional area 

R = radius of curvature 

F = load 

8 = angle subtended by SEG3 

DUDSA = local slope of deformed neutral axis 
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The first term of Eq. C6) represents the contribution from 

the hyperbolic stress distribution.  The second term acts 

to superimpose the component of force due to longitudinal 

loading. 

A correcting moment is calculated for each node to 

equilibrate the two representations of stress on the section. 

Mcorr " '!>  o(u)udu--Fniu (7) 
hi-l 

The need for the correcting moment is due to the fact that 

a distributed force is now represented by a point force as 

shown in Figure 22. 

The next step follows from a translation of the 

point forces.  Elementary statics dictates that a point 

force may be equivalently represented by the same point 

force and an added moment to account for the translation 

from the original line of action. 

After carrying out a similar procedure for the 

stresses at the right hand side of the finite element model, 

the entire system is set in equilibrium by accounting for 

the shear acting on each face of the model.  The values of 

shear are obtained directly from the beam bending model. 

Thus a correct set of boundary conditions has been determined 

for the finite-element model of the adhesive zone.  A 

computer routine designated by CONVERT was written to 

calculate appropriate boundary conditions and may be found 



in Appendix C. 
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Methods of Analysis 

B.  Flexure Loading 

a.  Beam Model 

The bending behavior of the "joggle-lap" joint was 

also studied.  It was found that the theoretical analysis 

was far simpler than that encountered for tensile loading. 

Each segment of the joint (see Figure 6) was modeled as if 

it were in pure bending.  Stresses in the straight beam 

numbers were calculated via the flexure formula while for the 

curved beams the formula 

My (8) 
y   (R-y)ya 

where     M = moment 

y = coordinate from the neutral surface 
(positive radially inward) 

R = radius of curvature 

y = distance between centroidal and neutral axes 

a = crossectional area 

was used. 

In order to compute bending stresses in SEG4 

(layered beam) it is necessary to introduce the notion of 

equivalent sections.  In this method we assume all materials 

to have the same modulus of elasticity.  By replacing the 

actual section with a mechanically equivalent one allows 

■41- 
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the flexure formula to be used as a means of computing 

stresses.  The width, of the sections are. varied so that 

the new width equals the ratio of the old modulus of the 

material to the new modulus of the material times the old 

width as shown in Figure 23.  Computing I   for the specimen 

geometry, 

3 
1 ,_ , 3 ,   ,2, 

i=l 
ieq = S (^ bJi^ + a-dp 

b = length of base 

h = length of side 

a = area 

d = distance between element neutral axis and 
overall section neutral axis 

it is apparent that the effect of the adhesive layer on 

overall section stiffness is negligible.  Using the flexure 

formula and the relation 

,  .        Eold  (a ) 
factual = E    x'equxv. 

new 

the stresses in SEG4 may easily be calculated. 
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b.  Finite Element .Model (flexure). 

The boundary conditions of the finite-element model 

may he changed to accommodate pure bending.  By utilizing 

couples at the finely meshed ends of the model, stresses in 

the adhesive zone may be monitored where it has been shown 

that the results from beam theory are less accurate.  Figures 

24 through 26 display a,,a-, and T12 stress contours 

respectively within the "joggle-lap" joint in pure 

bending. 

-44- 
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IV.  Experimental Results 

A.  Tension 

As set forth in the objectives of such a study, 

an emphasis was to be placed upon developing joint 

geometries which will accommodate high rate fabrication 

techniques.  In an effort to meet this criterion 

experimentally, it was necessary to utilize a joint 

configuration currently being molded in industry.  The 

time and expense of developing in-house molding 

capabilities proved to be beyond the scope of the 

research at hand.  Thus, test sections were cut from 

premolded panels of SMC which were later bonded together 

to form the joint. 

The bonding operation was also directed toward 

high fabrication procedures.  All test specimens were 

adhesively joined at Goodyear Adhesives Division, Ashland, 

Ohio, via production adhesives application techniques. 

It was felt that by using these sophisticated application 

procedures optimum adhesive properties could be obtained. 

In general, SMC is defined to be an anisotropic 

material because of the substantial difference between 

in-plane and out-of-plane properties.  Referring to the 

coordinate system of Figure 1, the constitutive relations 

-48- 
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that the joint invariably strained beyond the small-deflection 

range at considerably small loadings.  It was therefore a 

rather arduous task to approximately determine the 

experimentally applied moment to the joint.  The correlation 

between the theoretical and experimental data may be 

referenced in Figures 31-34.  As in the case of tensile 

loading, it should be noted that the stresses in SEG1 are 

again considerably higher than those predicted by theory, 

which is attributable to the molded geometry. 
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V.  Failure Analysis 

One of the most important parameters to predict 

in a study of this type is the ultimate loading conditions, 

This in essence dictates the choice of a failure criterion, 

The maximum stress theory will be employed in this report 

because of its simplicity in application and execution. 

Other popular failure criteria, such as the Tsai-Wu 

criterion were deemed inappropriate due to the limiting 

assumptions made in accordance with beam theory. 

Maximum stress criterion states that the material 

will fail when any component of stress exceeds the 

corresponding material strength.  In general, the above 

statement may be written in equation form as 

ai-Xi
T     (ai>0)     i = 1-3 (14) 

ai|> X±
c     (ai<0)     i = 1-3 (15) 

a±\-  Si i = 4-6 (16) 

T where    X.  = ultimate tensile strength 

C X.  = ultimate compressive strength 

S. = ultimate shear strength 

These equations simplify to those listed below after 

employing the local coordinate nomenclature for the 
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"joggle-lap" joint. 

au - X
T     (au>0) (17) 

|aj- XC     (au<0) (18) 

aus|- Si (19) 

Applying this failure criterion to the model, it was 

found that the bottom fiber tensile stresses (see Figure 35) 

predicted the ultimate loading of the joint within 

experimental error.  Thus the maximum flexural stress 

was utilized to predict failure. 

All failures occurring as a result of tensile 

loading were initiated along the bottom surface of SEG3. 

Crack initiation was observed to be of the net tension mode, 

while propagation appeared to be due to "interlaminar shear" 

There was a general consistency among the initiation and 

propagation of the crack for all tension tests. 

It was thought at one time that the curved sections 

of the joint (SEG2, SEG3) were either fiber deficient 

or highly anisotropic yielding a potential low strength 

area.  However, a photomicrograph of this cross-sectional 

area clearly shows no such tendencies.  (See Plate 7) 
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PIGURE 35:  BOTTOM FIBER STRESSES AT THE FAILURE LOAD 
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VI.  Conclusions 

The response of the "joggle-lap" joint was 

investigated for both tensile and bending loads in this 

report.  It was found that experimental data correlated 

rather well to the values of stress predicted by the 

analytical model.  The results of the bending study were 

not as favorable, in that experimental verification proved 

to be more difficult. 

A parametric study was undertaken for the "joggle- 

lap" joint subject to tensile loads in an effort to 

isolate the crucial design parameters.  In Figures 37 

through 40 a normalized stress value is plotted against 

one of four parameters - adherent thickness, inside radius, 

contact area, and load.  From these design curves the 

following conclusions are inferred. 

If weight saving requirements are not 

stringent, the effect of increasing 

adherent thickness drastically reduces 

maximum flexural adherent stress. 

Increasing the radius of curvature 

has a negligible effect on reducing 

maximum adherent stress due to a 

trade-off between mechanisms. 
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• Neglecting local stress concentrations, 

the effect of reducing the overlap 

length does not increase adherent stress 

significantly. 

• In the -region of the failure load, the 

maximum adherent stress increases linearly 

with load. 

An important parameter in joint design is that of 

joint efficiency.  This parameter is defined to be the 

ratio of ultimate joint load divided by the ultimate load 

carried by the material if the joint were not present. 

The joint efficiency of the "joggle-lap" joint in tension 

is calculated to be 0.153. 

The adhesive system employed in this report 

proved to be quite adequate from a structural point of 

view.  For the given overlap length of 1 in (2.54 cm) 

there were no recorded failures in the adhesive layer. 

Failure loads were predicted using the maximum flexural 

stress as the limiting criterion. 

This report would be incomplete if it did not offer 

several suggestions for future work as an outgrowth of 

this study.  An obvious limitation to the work reported 

herein is the inability to extensively verify the analytical 

model by experimental testing of various joint geometries. 
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Further development in this area would greatly increase 

the reliability of the computer model. 

More detailed work needs to be completed in the 

response of the "joggle-lap" joint to bending loads. 

This report included only a cursory investigation of 

bending behavior as a means of identifying the underlying 

problems associated with the experimental verification 

of theory. 

It is felt that this report will provide a 

fundamental basis for future research concerning the 
0 

"joggle-lap" joint. 
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X. Appendices 

Appendix A 

Derivation of the Governing Equations 
for a Curved Beam 

Consider the curved beam element shown in 

Figure 41. 

neutral 
axis 

centroidal 
axis 

Center   of Curvature 

FIGURE 41:  CURVED BEAM ELEMENT 

The analysis begins by seeking an expression for the 

strain distribution perpendicular to the neutral axis. 

Assume that the curved beam, with an initial radius of 

curvature R, undergoes a small elastic deformation due 

to the applied moment,  (It is important to note that 

the neutral axis of bending for a curved beam does not 

necessarily coincide with the centroidal axis of the 

beam.)  Under the action of this moment it becomes 

apparent that segment cd rotates about the neutral axis 
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to a new position c'd'.  It is assumed here, as in 

classical beam analysis, that plane sections remain 

plane.  It is readily seen that while the deformation 

of the beam varies linearly with the distance from the 

neutral axis, the strains do not.  The reason is that 

the original length of all the fibers prior to the 

application of the moment are not constant. 

Thus the following relation for the strain 

distribution is written below. 

£ = ÄT=  (R-Y)A(fr (20) 

where    e, = elongation 

y = radial coordinate (positive radially inward) 

A9 = angle of deformation 

Acj> = angle subtended by curved beam 

The above equation shows the strain to vary hyperbolically 

across the section.  Using the plane stress constitutive 

relation, Eq. (20) becomes 

„  _ -Ey A9 Mi, 
ü " (R-y)Acfr (21) 

Now it is appropriate to derive the formulas for flexural 

stress.  First assume that the portion of the beam is in 

equilibrium.  Following directly one may write the 

equations of equilibrium for an arbitrary section. 
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ZF  • , = 0 axial 

/,ada (22) 

Making the appropriate substitutions for the stress 

Eq. (22) becomes 

,  -EyA9da    n 
JA   (R-y)Acj)    U 

Assuming E, A<J>, and A6 to be constants the integral is 

simplified as shown in Eq. (24). 

(23) 

jA TR^yT  u (24) 

It is possible to solve Eq. (24) for the radius of curvature 

and thus locate the neutral surface; however, it will suffice 

to let Eq. (24) stand as is for now.. 

Referring to Figure 42 and summing moments about the 

hyperbolic 
stress distrfbution 

FIGURE 42 
line of 
arbitrary 
section 

neutral axis, one finds that the stress distribution must 

also satisfy the equation below. 
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M = -/. a yda (25) 

making the appropriate substitutions, Eq. (25) becomes 

M ■ -'A «H^W*«» (26) 

Notice the algebraic relation that permits the substitution 

of an equivalent expression into Eq. (27). 

_£_ = ^L_ - y (28) 
R-y  R-y  x 

Eq. (27) now becomes 

M = ££jL[/a |^L_ -   /.   yda] (29) AcJ> L A R-y      A 2 

and from the result of Eq. (24) 

M = !$JjL ( R(0) - aü) (30) 

where a = area 

ü = distance between the neutral and 
centroidal axes 

Rearranging Eq. (30) yields 

M. = ~M (3D 
T   Eau 
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Comparing this equation with the well-known deflection 

equation for straight beams, it is apparent that 

SUL  = Jl (32) 
dx2   El 

the left hand side of Eq. (31) is not yet suitable.  The 

ultimate goal of such an analysis is to seek an equation 

that relates the deflection of the neutral axis to the 

position along the neutral axis. 

Consider Figure 4 3 shown below. 

neutral axis of the 
undeformed geometry 

M(s) 

neutral axis of the 
deformed geometry 

FIGURE 43:  CURVED BEAM ELEMENT SUBJECT TO DEFLECTION 

The beam is deflected as shown to illustrate the most 

general case of a non-constant moment.  That is, the moment 

is a function of position.  Now the deflection can be measured 

as the deviation between the undeformed neutral surface and 

the deformed neutral surface.  For convenience just the 

neutral axis and appropriate parameters are drawn in 

Figure 44. 
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AS 

* s^3fr 
undeformed 
neutral 
axis 

deformed 
neutral 
axis 

FIGURE 44 

A coordinate system u,s is defined and shown in the figure 

where s traverses tangentially to the undeformed neutral 

axis and u is defined to be perpendicular to that axis. 

Enlarging the area of interest and focusing on 

the triangle of Figure 45, one finds that 

FIGURE 45 
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9(a) =  AU AA 

Realizing that tan a = a for small a, it follows that 

AX =  (R+tt)As 

and thus 

9(s) _   RAu 
(R+u)As 

which may be written as 

Au _  (R+u) 9 (s) 
As        R 

Finally in the limit as As->0:  Eq. (33) becomes 

lim  Au _  (R+u)9(s)  _  du 
As-*0  As        R        ds 

From Eq. (31) , several simplifications can be made with 

the proper substitutions. 

(33) 

(34) 

where 

A9    -M 
A9    _ - Eau 

AA  -  AS 

A* = -R 

lim   A9 
As-*- 0  As 

-M d9 
ds (35) 

REau 

Differentiating Eq. (34) with respect to s yields 
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d2u _  (R+u) d9 .... 
I* dl" (36) 

and substituting Eq. (35) into Eq. (36) yields the final 

results - a second order differential equation relating 

deflection to position in terms of the applied moment. 

d2u   (R+u)M ,,_, 
2     2  — 

ds    R Eau 



Appendix B 

Beam Bending Model of the "Joggle-Lap" Joint 

SEG1 may be modeled as a straight beam shown in 

Figure 46. 

i_Ei H, 

M. 

FIGURE 46:  'SEG1 MODELED AS A STRAIGHT BEAM 

In general, the moment experienced by any segment originates 

from two sources:  eccentricity from geometry and 

eccentricity due to deflection.  The preceding statement 

may be written algebraically as follows. 

where 

M = F(e    + e, ,.) geom   defl' 

M = moment 

F = applied force 

e = eccentricity 

(38) 

It is readily seen that e    =0 for SEG1.  Writing Eq. (38) 

in the local coordinate system, the moment experienced by 

■83- 
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this segment reduces to 

M = FU;L (39) 

where 

u, = deflection in the local coordinate system 

Substituting Eq. (39) into Eq. (5) yields 

-,2 d u,   Fu, 
—~ - —±-  = o (40) 
ds£    El 

The corresponding boundary conditions are expressed 

below 

u1(0) = 0 

u1(£1)= u0 

where u is yet undetermined. 

The solution of Eq. (40) is of standard form and known 

to be 

Ul = Cl sinn V F/EI • s, + C- coshvF/EI • s,        (41) 

Applying the boundary conditions to Eq. (41) determines 

the constants C, and C9 to be 

c2 = 0 

C1  = uQ / sinh V/F/EI • £1 

and thus 
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u, = ua sinhv^F/EI • s. 

sinhV F/EI • I. 
0<s,<£, (42) 

where u0 is necessarily negative to correspond with the 

physical system.  In other words, for a given tensile 

load it is expected that SEG1 will deflect downward. 

(Figure 6).  Also 

ds - U, ) = u0 \/ F/EI  cosh >/F/EI £, 
1   L         x- 

sinh 7 F/EI  £, 

It should be noted that the deflection as given 

by Eq. (42) is not known explicitly in terms of the given 

parameters.  U0 is still unknown and it will be shown later 

how this value may be determined uniquely. 

SEG2 is modeled as a curved beam and shown in 

Figure 47.  The local coordinate system is a curvilinear 

coordinate system with the s2 axis traversing the neutral 

axis as shown.  Positive deflections are measured normal 

to the undeformed neutral axis in the direction of u2. 

FIGURE 47 neutral axis 

centroidal axis 
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From the derivation of the general case for a curved beam 

in pure bending (see Appendix A), the governing equation 

for the deflection is 

d2u2   (R + u2)M 
— =  -  _ 

ds2    R Eau 
[43) 

where 
s- = arc length 

u~ = deflection normal to neutral axis 

M = moment 

R = radius of curvature 

E = modulus of elasticity 

a = cross sectional area 

ü = distance between neutral axis and 
centroidal axis and its value is 
necessarily negative 

The moment may be written as the product of the applied 

load and the eccentricity, where the eccentricity in this 

case consists of both geometry and deflection considerations 

At this point, it is appropriate to introduce 

the notion of extensional effects.  It is realized that 

with the given loading conditions, the "joggle-joint" will 

undergo deflections parallel to the neutral axis as well. 

This fact would be of little concern if all beam segments 

of the joint configuration had their neutral axis aligned 

with the loading axis.  If this were the case, the 

longitudinal displacement would not affect the eccentricity. 
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However, it is evident that the extensional strains in 

the curved beam segments give rise to an added component 

of eccentricity defined to be e  ..  To calculate the 

value of e  ,, one merely applies the criterion of 

force equilibrium to SEG2 (Figure 47) in the local 

coordinate system. 

IF 
u2 

= 0 H2cos8 + V-sin 

S2 
= 0 H^sinG = V-cos 

H2 = FcosB thus 

where 8  = angle subtended by SEG2 

Employing the constitutive relationship 

a  = Ee 

where a = stress 

E = modulus of elasticity 

e = strain 

and considering only the y (global coordinate) component 

of the extension we thus arrive with the expression for 

eexf 

e  . = Fs-cos(s~/R)sin(s«/R) ext  _^ £_ 1  (44) 

Eq. (44) must be added to the other terms which comprise 

the eccentricity due to deflection. 

Therefore Eq. (43) becomes 
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2 
d u9    ,R-u9.p 

-4 " ±^}1  [egecm + edefl + <W      (45: 

ds-   R Eau     ^ 

s2 where    egeom = Rd-cos^) + u) 

edefl = u2cos {-|) 

eext = Fs2cos (s2/R)sin (s2/R) 
aE 

Initial conditions for SEG2 are found by matching 

deflection and slope at the 1-2 interface. 

u^(0) = u0 l2 

du 
2  (0) = u0 y/  F/EI  cosh \/F/EI l1 ds2 

sinh 7 F/EI Z± 

Using a numerical integration routine to solve Eq. (4 5) the 

deflection u2 may be marched out as a function of arc length 

s2.  A Runge-Kutta method based on Verners fifth and sixth 

order pair of formulas was used.  An explanation of the 

integration routine DVERK may be referenced in Appendix C. 

Figure 4 8 shows SEG3 modeled as a curved beam. 

From Eq. (37) the governing differential equation for a 

curved beam in pure bending is 

d2u3 _  (R+U3)  M (46) 
2    2  - 

ds'  R Eau 

where    M = F(egeom + edefl + eext) 
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centroid a 
axis 

neutra 
axis 

FIGURE 48:  SEG3 MODELED AS A CURVED BEAM \ R 

Through geometric considerations e    can be shown to be geom 

egeom =  u +  Rd-cosG)   -2ucos6  +  Rsin(£ -9  +  t53/R)-cos9 (47) 

where 

Also 

9 = angle subtended by SEG3 

ü = distance between centroidal and neutral 
axes 

R = radius of curvature 

s3 = arc length along neutral surface of 
SEG3 

edefl = M cos^/2  ~ 9 + s3/R) (48] 

From a similar argument developed earlier it may 

be shown that e t for SEG3 is given by 

eext = Fs3cos(9-s3/R) sin (9-s3/R) (49) 

aE 
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Thus Eq. (46) becomes 

2 
1^3 = -(R±u) F (egeom + edefl + eext) (50) 

ds^   R Eay 

where egeQm, edefl, and eext, are given by Eqs. (47), (48), 

and (49) respectively. Matching boundary conditions at the 

2-3 interface provides initial conditions to Eq. (50) which 

may be integrated numerically as before. 

SEG4 is analyzed as a multi-layered beam and 

shown in Figure 49.  Treating this segment to be composed 

of three linear elastic beam elements, the governing 

differential equation follows from Eq. (5) with a slight 

modification. 

d2u, 
—4--*— (51) 
dS4    I  Vi 

i=l 

where        I. = moment of intertia of the ith section 
about the neutral axis 

E. = modulus of elasticity of the ith element 

3 
Z  E.I. is referred to as an effective flexural stiffness 

i=l 

and is merely a constant.  The moment is defined in the 

usual manner as 

M = F(e    + e, -■■) geom   defl' 
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FIGURE 49:  SEG4 MODELED AS A LAYERED BEAM 

F  X 

FIGURE 50:  SEG5 MODELED AS A STRAIGHT BEAM 
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where        e    = .5(t+b) geom 

edefl * u4 

Thus Eq. (51) becomes 

,2 
U4 _ F (.5(t+b) + U4) ,„,   _  (OZ) 

ds4       Vi 
i=l 

Initial conditions are found by equating the deflection 

and slope at the 3-4 interface.  Following in the usual 

manner, Eq. (52) is integrated to obtain an expression 

for the deflection of SEG4 as a function of arc length 

in the local coordinate system. 

Finally SEG5 is shown in Figure 50 modeled as 

a straight beam member.  The governing differential 

equation is the same as Eq. (5) 

,2 d  u5 

2 
M 
El 

ds5 

M  = =      FUr 

(53) 

and the initial conditions are obtained by matching the 

deflection and slope at the 4-5 interface.  Upon integration 

of Eq. (53) the deflection SEG5 will be a known function of 

the abscissa s- of the local coordinate system.  Therefore the 

deflection and slope at point P of Figure 50 are also known. 

But it should be apparent that the values of the deflection 
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and slope at this point must be zero or at least within 

certain tolerance limits.  This in fact is the final 

boundary condition to the problem that is needed to uniquely 

determine the value of u0 which was previously assumed to 

be arbitrary.  Thus, through an iterative process, a 

correct value of u0 may be calculated by assuring that the 
3 

deflection and slope of point P of SEG5 is sufficiently 

close to zero.  To avoid confusion, it should be noted that 

by specifying zero deflection at point P we will force 

the slope to zero by the nature of the deflection function 

of SEG5.  So in fact this is a well-posed problem, whereby 

we specify only enough boundary conditions as there are 

unknowns.  The process for correctly determining u0 is 

shown schematically in Figure 51. 

3 
it was found that reliable results were obtained by 

using the tolerance limits listed here. 

|deflection (P)| < .00001 

|slope (P)|     < .00005 
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First   Iteration 

c 
o 

o 

y Tolerance 
Limit ~\ 

1                        1                           T <D 

>»- 
a> 
Q 

1                        '                           1 

L »0 _^-—~~~~~           P 

c 
o 

o 
o 

a 

Second Iteration 

Tolerance 
Limit 

\ 

u. 

Third Iteration 
Tolerance 

Limit   ~\ 

FIGURE 51:  ITERATIVE PROCESS FOR DETERMINING u 



Appendix C 

Computer Programs 

a.  JOGGLE 

To facilitate ease of calculation, a computer 

routine identified as JOGGLE was developed and may be 

referenced below.  Essentially this program calculates a 

correct value of u0 and proceeds to determine a solution 

for the deflection while calculating stress profiles 

along the joint configuration.  These stress profiles are 

linear in the straight beam members (SEG1, SEG5) and 

hyperbolic in the curved beams (SEG2, SEG3). 
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C- d 00000 GGGGG GGGGG L EEEEE 
C- J 0        0 G G *L E 
C- d 0        0 G     GG G     GG L EEE 
C- ddOOGGGGL E 
C- ddddd OOCOO GGGGG GGGGG LLLLL   EEEEE 
C- 
C- 
c- 
c- 
c- 
c- 
C- ANALYTICAL BEAM BENDING MODEL 
C- ' FOR A dOGGLE LAP dOINT 
C- 
C- 
C- DEVELOPED BY:  RICHARD C. GIVLER 
C- UNIVERSITY OF DELAWARE 
C- SEPT 78 - dAN 79 
C- 
C- 
C- 
C- 
SSET AUTOBIND 
SRESET FREE 
FILE  6(KIND=REM0TE.MAXRECSIZE=22) 

DIMENSION PR0D(3). ERR(I). T(2).  EK3).  YPRIME(2) 
COMMON R. PLOAD. ESMC, WIOTH. THICK. YBAR. THETA. EADH, 

-. BOND. d. TORC. TORCS. TRAC. TRACE, SHEAR 
C- 
c-- 
C PARAMETERS AND NOMENCLATURE 
C- 
C- 
C MATERIAL THICKNESS 

■THICK=.1 
C LONGITUDINAL MODULUS OF ELASTICITY OF SMC IN PSI 

ESMC=2.1E+06 
C-- MODULUS OF ELASTICITY OF'ADHESIVE IN PSI 

EADH=1.OE+05 
C LOAD IN LBS 

PL0AD=200. 
C INSIDE RADIUS IN INCHES 

RADI=2.5*THICK 
C OUTSIDE RADIUS IN INCHES 

RAD0=3.5+THICK 
C BONOING THICKNESS IN INCHES 

B0ND=.03 
C CONTACT WIDTH IN INCHES 

C0NTA=1 .0 
C SPECIMEN WIDTH 

WIDTH=1.0 
C LENGTH OF SEGMENT 1 

SEGA=3.5 
C LENGTH OF SEGMENT 5 

SEGB=4.0 
C LEFT INTERVAL LIMIT FOR ITERATION 

AINT=-.04 
C RIGHT INTERVAL LIMIT FOR ITERATION 

B1NT=+.01 
C TOLERANCE LIMIT ON INITIAL DISPLACEMENT 

ERR(1)=.00001 

PI 

00000003 
00000004 
OOOÖ0005 
00000006 
00000007 
0:000008 
03000009 
00000010 
00000011 
00000015 
00000016 
00000020 
00000021 
00000024 
00000025 
0 0000026 
C0OOOO27 
00000028 
C0000040 
0000004 1 
0 0000042 
C0000043 
COOOOIOO 
0 3000110 
0.1000120 
C0000150 
C0000175 
C0000176 
C0000178 
C0000180 
00000200 
C0000210 
C0000220 
03000300 
C3000400 
C0000500 
COOC06CO 
C0000700 
COOOOSOO 
00000900 
COOOiOOO 
CD001100 
C0001200 
COOOOOO 
COC01400 
C3001500 
C0001600 
C0001700 
C0001800 
COOOISOO 
C0002000 
CC002100 
CC002200 
C0002300 
CC002400 
00002420 
C0002430 
C0002435 
00002440 
00002445 
00002450 
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c STEP SIZE FOR NUMERICAL INTEGRATION 
STEP=50. 
PI=3.141592654 

C TRACING CONSTANTS 
TRAC=1.0 
TRACE=1.0 

C-  
c NOTE:DEFLECTIONS ARE MEASURED NORMAL TO THE UNDEFORMED 
C-     NEUTRAL AXIS 
C- 

Y0=(AINT+BINT)/2. 
C- 
c ITERATIVE CALCULATION OF YO TO FORCE ZERO DEFLECTION 
C AND SLOPE AT END OF SEG5 
c YO MUST LIE BETWEEN THE PROPOSED LIMITS OF AINT AND BINT 
C- 

C NUMERICAL INTEGRATION VIA LIBRARY ROUTINES DVERK AND UERTST 

c- 
101  CONTINUE 

DO 200 X=0,SEGA+.005.SEGA/STEP 

PR0D(3)=SQRT(PL0AD/(ESMC'(WI DTH'THICK-* 3./12. )) ! 
PRODI 1 )=Y0*( .5*(EXP(PROD(3)*X)-EXP(-PR0D(3)"X))) 
PR0D(2)=.5*(EXP(PR0D(3)'SEGA)-EXP(-PROD(3)* SEGA ) ) 
Ti1)=PROD(1)/PR0D(2) 

T(2)=Y0*PROD(31/PR0D(2) M .5*(EXP(PROD(3)*X)+EXP 
-(-PR0DI3 )*X) ) ) 

200  CONTINUE 

DIMENSION  C(24), Y(2).  W(2.9) 
EXTERNAL FCN1 

C CALCULATION OF THE RADIUS OF CURVATURE FOR CURVED MEMBERS 
R=WIDTH'THICK/(ALOG(RADO/RADI)) 
NW = 2 

c CALCULATION OF THE ANGLE SUBTENDED BY SEG2 AND SEG3 
THETA = ARCOS((5.»THICK - BOND)/(6.'THICK) ) 
N = 2 

C CALCULATION OF THE DISTANCE BETWEEN NEUTRAL AXIS AND 
C CENTROIDAL AXIS OF CURVED MEMBERS 

Y3AR=RADI+THICK/2.-R 
X = 0.0 
Y( 1 ) = -T( 1 ) 

Y(2)=-T(2) 
TOL=.000001 
IND=1 

DO 300 Z = 0.0.R*THETA+.001 .R*THETA/STEP 
XEND=FL0AT(Z) 

CALL DVERK(N.FCN1,X.Y.XEND.TOL.IND.C.NW,W , I ER) 
IF(IND.LT.O.OR.IER.GT.O) GO TO 20 

300  CONTINUE 
20  CONTINUE 

RINT=RNEW 
EXTERNAL FCN2 
X = 0.0 
Y( 1 ) = -Y( 1 ) 

Y(2)=-Y(2) 
NW = 2 
N=2 

0 3002451 
03002452 
03002475 
00002500 
00002501 
00002502 
G00Q2SÖ0 
00002700 
03002800 
0 3002900 
00003000 
03003100 
0 3003200 
00003210 
00003220 
000034C0 
00003405 
03003410 
00003420 
00003425 
03003430 
00003435 
00003440 
00003445 
03003450 
03004200 
000043C0 
0 3004400 
00004500 
03004600 
C0OO47OO 
0000"800 
03005100 
0 0006000 
C3006100 
C0006150 
C0OOS2QO 
C0006300 
C3006350 
00006400 
00006500 
C0006550 
C3006552 
00006600 
C3006700 
C3006800 
C0006900 
C0007000 
C3007100 
C0007200 
C0007300 
CD007400 
C0007500 
C3007800 
C3007900 
C3007950 
C0008600 
C0008700 
C3008720 
C300S730 
C0008S00 
C0008900 
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IND=1 0^OC°COO 
DO   250   M=1 .24 0riOO910O 
C(M)=0.0 00009200 

250  CONTINUE 0:009300 
DO 350 Z=0.0,R*THETA+.001.R*THE7A/STEP 03009400 
XEND=FLOAT(Z) 00009500 
CALL DVERK(N, FCN2.X . Y.XEND ,T0L. IND.CNW.W, IER) 0-00^600 
IF<INC.LT.O.OR.IER.GT.O) GO TO 70 03009700 

350  CONTINUE P "010000 
70  CONTINUE 03010100 

EXTERNAL FCN3 C:011000 
X = 0.0 CD011100 
NW=2                            . 00011200 
N=2 0:011300 
IND=1 00011400 
DO 2S0 M=1,24 C0O115QO 
C(M)=0.0 03011600 

290 CONTINUE 0:011700 
DO 400 Z=0.0.C0NTA+.005.C0NTA/STEP C1011S00 
XEND=FL0AT(Z> 0301 1900 
CALL DVERK(N. FCN3.X. Y.XEND,TOL. IND.CNW.W, IER) 03012000 
IF( IND. LT.O.OR. IER.GT.O) GO TO 3C 0001 "5 1 00 

400  CONTINUE 0 "012400 
80 CONTINUE 03012500 

EXTERNAL FCN4 03013400 
X=0.0 03013500 
N'W = 2 CO013600 
N=2 0 3013700 
IND=1 03013800 
DO 291 M=1 .24 03013900 
C(M)=0.0 0 0014000 

291 CONTINUE 03014100 
DO 246 Z=O.O.S£GB+.005.SEGB/ST£P 03014200 
XEND=FLOAT(Z) 03014300 
CALL DvERK(N.FCN4,X. Y.XEND.TOL. IND.CNW.W. IER) 0301^400 
IF( INO. LT.O.OR. IER.GT.O) GO TO 31 C014500 

246  CONTINUE '                       CO014800 
81 CONTINUE 03014S00 

IF( ABS( Y( 1 ) ) . LT.ERRM ) ) GO TO 83 CO 14951 
IFIYi1).GT.O) GO TO 100 C00149RO 
IF(Y(1!.LT.O) GO TC 89 0 3014933 

100  CONTINUE. C3015COO 
8INT = Y0 0 "■0 1*075 
Y0=(AINT+8INT)/2. C0O15O76 
GO TO 101 0 3015077 

89  CONTINUE 03015080 
AINT=YO 03015085 
Y0=(AINr+8INT)/2. 03015086 
GO TO 101. ■ 03015087 

88  CONTINUE 00015099 
Q- * ***************** ****** ************ * * **************->-.;*** COO 1 SCO 
Q - ****************** ***********, * * * * v***************** - * * * * C^ 0160^0 
Q . * * * ******** ********* * * ***********************■***********.* Q -.Q < gQ4Q 
c"   . G0024000 
C- ----CALCULATION OF DEFLECTION AND SLOPE AS A FUNCTION 00024100 
C-     OF X FOR SEGMENT 1. C0024200 
c" C0024300 

WRITE(6.500) YC C"02^400 
500 FORMATI//////////,10X.'Y0=' ,F14.11 . ) 0002^500 

WRITE(6.501) 00024600 
501 FORMAT( ' - ' ) C3024700 

WRITE(6.502)                   - 00024800 



-99- 

502 

10 

1 1 
199 
505 

C- 
C  
C- 
C- 

24 

25 

FORMAT!' 
WRITE16. 
FORMAT!/ 
W R IT E ( S . 
FORMAT!1 

-,8X.'MOM 
dW = 0 

DO 505 X 
PR0D(3)= 
PROD!1 ) = 
PR0D(2)= 
Ti1)=PRO 
T<2)=Y0- 

-(-PROD!3 
-CALCULAT 

SIGT=-PL 
-(WIDTH-T 
S1GB=PL0 
-(WIDTH'T 

<J = iJW+2 
IF( INT(.J 
WRITE!6. 
FORMAT!t 
WRITE!6. 
F0RMATI5 
UW=JW+1 
.CONTINUE 

) 

30 

2) 
////.' DEFLECTION AND SLOPE FOR SEGMENT 1'.//) 
9) 
OX.'X   DISTANCE',5X,'DEFLECTION',7X.'SLOPE',9X,'STRESS' 
ENT'.//) 

=O.O.SEGA+.005.SEGA/STEP 
SORT!PLOAD/!ESMC'fWIDTH'THICK-*3./12.))) 
Y0*( . 5MEXP! PR0D!3)*X!-EXP! -=ROD(3)- X ) ) ) 
. 5*(EXP(PR0D!3)»SEGA)-EXP(- PRODI 3)'SEGA)) 
D( 1 )/PR0D!21 
PROD!3)/PROD!2)M.5*(EXP<PROD!3)*X)+EXP 
)*X) ) ) 

ION OF TOP AND BOTTOM FIBER STRESSES 
OAD*T(1 ) »THICK/2./(1 . /12 . *W1DTH*THICK»*3)+PLOAD/ 
HICK) 

AD*T(1 )»THICK/2./(1 ./I 2."WIDTH*THICK*^31 + PLOAD/ 
HICK) 

/2) . NE.J/2.0) GO TO 199 
10) X. T(1). T(2). SIGT. PL0A0*T(1) 
0X.5IE11 .4.3X) ) 
11 ) SIGB 
2X.E11.4.//) 

C- 
c- 

-CALCULAT 
OF ARC 

WRITE!6, 
FORMAT!/ 
WRITE!6. 
FORMAT!1 

-.12X.'WO 
EXTERNAL 
R=WIDTH' 
NW = 2 
THETA=AR 

N = 2 
Y8AR=RAD 
X = 0.0 
Y( 1 ) = -T( 
Y(2)=-T( 
T0L=.000 
IND=1 
ü = 0 
DO 510 Z 
XEND=FLO 
CALL DVE 
IF! IND.L 
JW=J+10 
IF! INT( J 
WRITE!6, 
FORMAT!1 
YGL0B=-. 
DO 660 H 
-STRESSES 
-ON TENSI 
AREA=WI0 
BSIGX=TO 

ION OF DEFLECTION AND SLOPE AS A FUNCTION 
LENGTH F~R SEGMENT 2 

24) 
////.' DEFLECTION AND SLOPE FOR SEGMENT 2',//) 
25) 
OX. 'ARC LENGTH' .5X. 'DEFLECTION' .7X, 'SLOPE' .1 OX. 'STRESS' 
MENT' . 1 1X. 'SHEAR' .//) 
FCN1 

THICK/!ALOG(RADO/RADI)) 

COS!(5.*THICK- BOND)/(6.»THICK)) 

I+THICK/2.-R 

1) 
2) 
001 

=0.0,R*THETA+.001.R*THETA/STEP 
AT(Z) 
RK(N.FCN1.X.Y.XEND.TOL.IND.C.NW.W.LER) 
T.O.OR.IER.GT.O) GO TO 51 1 

W/10) . NE.JW/10.0) GO TO 299 
30) X,Y:1 ),Y!2) . TORC, SHEAR 
0X.3IE11.4.3X),20X.E11.4.5X.E11.4,/) 
5*TH1CK 
=-(RA00-R).R-RADI.THICK/10. 
FROM THE MOMENT DISTRIBUTION SUPERIMPOSED 

LE STRESSES AS A FUNCTION OF BEAM THICKNESS 
TH*THICK 
RC*H/((R-H)*WIDTH*THICK-YEAR)+PLOAD-COS(X/R)/AREA 

00-024900 
0 3025000 
00025100 
0-3025200 
CO02530O 
00025400 
03025500 
03025600 
00025700 
0 3025300 
O3025SO0 
0 0026000 
0 3026100 
0 3026200 
00025220 
0 0026250 
00026251 
0 3026252 
0302G253 
0302S300 
00026-400 
00026500 
03026600' 
C3026650 
03026660 
C3026700 
03026800 
0 3026900 
C302TOGO 
C0O271OO 
C0O272OO 
03027300 
0 3027400 
C0O275OO 
03027600 
C3027700 
C0027900 
C0O28OOO 
C0028100 
C3028200 
C0O283OO 
COQ28400 
O0O2S5OO 
C0O236OO 
C3028700 
CC023900 
C0029000 
C3029100 
C3029200 
C0029300 
C0029400 
00029500 
C0029600 
C0029700 
C0029800 
C0029900 
00029940 
CC029950 
C0029955 
00029957 
C0029959 
00029960 
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WRITEI6.600)   YGLOB.    8SIGX 03029961 
600   F0RMAT(52X.F4.2.1X.El 1 .4) • 03029952 

YGL0B=YGL03+THICK/10. 03029966 
660     CONTINUE 0 3029963 
299     d=d+1 03030000 
510 CONTINUE 03030100 
511 CONTINUE 0 3030200 

C- 0-3030200 
C CALCULATION OF DEFLECTION AND SLOPE FOR SEGMENT 3 03030400 
C-     AS A FUNCTION C- ARC LENGTH 03030500 
c* 00030600 

WRITE(6.27) 03030700 
27 FORMAT!/////.' DEFLECTION AND SLOPE FOR SEGMENT 3'.//) 03030800 

WRITE(6.26) 0 3030900 
26  FORMAT) 1 OX.'ARC LENGTH'.5X.'DEFLECTION',7X.'SLOPE'.1 OX.'STRESS'   03C31000 

-.12X.'MOMENT' .1 1X. 'SHEAR' .//) 0 3031100 
EXTERNAL FCN2 0 30312CO 
X=0.0 03031300 
Y(1)=-Y(1) 00031400 
Y(2)=-Y<2) 0 3031500 
NW=2 0 3031700 
N=2 03031800 
IND=1 • 03031900 
DO 515 M=1.24 03032000 
C(M)=0.0 0 3032100 

515  CONTINUE 03032200 
J=0 03032300 
DO 520 2=0.0.R'THETA+.001 ,R-THETA/STEP C3032400 
XEND=FL0AT(2) 03032500 
CALL DVERMN.FCN2.X.Y.XEND.TOL,IND.C.NW.W.IER) 03032600 
IF( IND. LT..0.0R. IER.GT.O) GO TO 525 03032700 
UW = <J + 10  • 03032800 
IF(INT(JW/10).NE.ÜW/10.0) GO TO 349 03032900 
WRITEI6.60) X. Y(1). Y(2). TCRCS. SHEAR C3033000 

60  FORMAT! 10X.3(E1 : .4.3X) .20X.E11 .4.5X.E11 .4,/) 00033100 
YGL0B=-,5*THICK C3033140 
DO 770 H=-(RAD0-R).R-RADI.THICK/10. 03033150 

C STRESSES FROM THE MOMENT DISTRIBUTION SUPERIMPOSED C3033155 
C ON TENSiLE STRESSES AS A FUNCTION OF BEAM THICKNESS (33033157 

CSIGX=-TORCS'H/((R-H)*WIDTH»THICK*YBAR)+PLOAD-COSfTHETA-X/R)/ C3033160 
-(WIDTH-THICK) c- C3033161 
WRITEI6.700) YGLOB. CSIGX C3033162 

700  F0RMATI52X.F4.2.1X.E11.4) 03033164 
YGL0B=YGL0B+THICK/10. 03033166 

770  CONTINUE C3033163 
349  <J = U+1 00033200 
520  CONTINUE C30333C0 
525  CONTINUE C0O334CC 

c" C3033600 
C CALCULATION OF DEFLECTION AND SLOPE AS A FUNCTION C0033700 
C-     OF X FOR SEGMENT 4 C3033800 
C- 00033900 

WRITE(6.28) C003-000 
28 FORMAT!/////.' DEFLECTION AND SLOPE FOR SEGMENT 4'.//) 00034100 

WRITE(6.29) C30342C0 
29 FORMAT!1 OX.'X DISTANCE',5X,'DEFLECTION' . 7X , 'SLOPE' .//) C30343C0 

EXTERNAL FCN3 C0O344OO 
X=0.0 C0034500 
NW=2 C3034600 
N=2 C0034700 
IND=1 C0034800 
DO 530 M=1.24 C3034900 
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C(M)=0.0 C0035000 
530 CONTINUE 

U = 0 
DO 535 Z=0.0.C0NTA+.005.C0NTA/STEP 
XE.ND=FLOAT(Z) 

0 3035100 
0 303 5 200 
0 3035300 
03035400 

CALL DVERK(N.FCN3.X. Y.XEND.TOL. IND.CNW .W.IER) 0 3035500 
IF!IND.LT.O.OR.IER.GT.O) GO TO 540 C3035S00 
UW = <J+10 00035700 
IF( INT(dW/10) .NE.dW/10.0) GO TO 339 03035S00 
WRITE(6.62) X, Yd ) . Y(2) 0 3035900 

62 FORMAT!10X.3IE11.4.3X)./) 0 3036000 
399 d = d+1 00036100 
535 CONTINUE 03036200 
540 CONTINUE 0 3036300 

C- C3O3G40C 
C  -CALCULATION OF DEFLECTION AND SLOPE AS A FUNCTI ON OF 0 3036500 c- X FOR SEGMENT 5 00036500 c- 

WRITE!6.31 ) 
0 3036700 
0 3036800 

31 FORMAT!/////.' DEFLECTION AND SLOPE 
WRITE(6.32) 

FOR SEGMENT 5 .//) 0 30 36900 
0 303 7000 

32 FORMAT!10X.'X DISTANCE',5X.'DEFLECTION' 7X,'SLOPE ,10X.'STRESS'   00037100 
-.12X.'MOMENT'.//) 0J037150 •' 
EXTERNAL FCN4 00037200 
X = 0.0 00U37300 
r:w = 2 C3037400 
N = 2 03037500 
IND=1 0 3037600 
DO 545 M=1,24 C3037700 
C'M)=0.0 03037300 

545 CONTINUE 
d = 0 

0 303 7900 
0 3038000 

DO 550 Z=O.0.SEGB+.0O5.SEGB/STEP • 00038100 
XEND=FLOAT(Z) 03038200 
CALL DVERKfN. FCN4.X. Y.XEND.TOL. IND.CNW.W. IER)                      C30383C0 
IF!IND.LT.O.OR.IER.GT.O) GO TO 555 C0038400 
JW=J+10 03038500 
IFIX.EO. .15) GO TO 244 C3033550 
IF!INT(,JW/10).NE.JW/10.0) GO TO 245 C30366Q0 

244 WRITEI6.65) X. Yd). Y(2). PLQAD'Yd) C0038700 
65  FORMAT!10X.3!E11 .4.3X) .20X.E11.4,/) G30388C0 

DO 880 H = -THICK/2. .THICK/2. .THICK/10. 03038840 
C STRESSES FROM THE MOMENT DISTRIBUTION SUPERIMPOSED C0O3G85O 
C ON TENSILE STRESSES AS A FUNCTION OF BEAM THICKNESS               0^,38355 

ESIGX=-PLOAD'Y( 1 )'H/( 1 ./12 .»WIDTH*THICK**3)+PLOAD/(WIDTK'THICK )   P 3038060 
WRITE16.800) H. ESIGX 0303^80 

800  FORMAT!52X.F4.2.1X.E11.4) 030388=0 
380  CONTINUE 00033895 
245 d = d+1 C003S900 
550 CONTINUE C039000 
555  CONTINUE 00039100 

ST0P C0O393OO 
. END 03039400 

00039410 
00039420 

C-*** SUBROUTINES **« C0O3943O 
£-**** + ************** ************ ************ ± * * * t ******** * P0039440 
C-********************************************************* C"103°-450 
C" C0039460 
C: NUMERICAL INTEGRATION OF SEG2 C0039470 
C" _ C00394SO 

SUBROUTINE FCN1(N.X.Y.YPRIME) C0O395OO 
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c- 
C-- 
c- 

560 

C- 
C-- 
c- 

COMVON R. PLOAD, ESMC, WIDTH. THICK. YEAR, THETA. EACH. PI 
-. BOND. J. TORC. TORCS, TRAC. TRACE. SHEAR 
DIMENSION Y(2). YPRIME(2) 
YPRIMEf 1 )=Y(2) 

-ECCENTRICITY DUE ONLY TO EXTENSICNAL EFFECTS 

YECC = P10ÄD*XJ'C0S(X/R)*SIN(X/R)/(WIDTK»THICK''ESMC) 
TORC = PLCAD*(YECC>'TRAC+YBAR + Ri ( 1 . -COSiX/R) ) -Y( 1 )*COS(X/R) ) 
SHEAR=PLOAD*(PLOAD/(WIDTH-THICK»ESMC) '(X/R'COS(X/R ) **2 

- + SIN(X/R )*(X/R-(-SINfX/R)1+CCSIX/R))J+SIN(X/R)+Y(1)/R 
--SINIX/R)) 
YPRIMEf 2 ) = (R+Y{ 1 ) )*T0RC/(R**2.+ESMC*WIDTH'THICK*YBAR) 
RETURN 
END 

-NUMERICAL INTEGRATION OF SEG3 

SUBROUTINE FCN2(N.X.Y.YPR1ME) 
COMMON R, PLOAD, ESMC. WIDTH, THICK. YBAR. THETA. EADH. 

-, BOND. J, TORC. TORCS, TRAC, TRACE, SHEAR 
DIMENSION Y(2.), YPRIME(2) 
YPRIMEf! )=Y(2) 

C- 
C- ECCENTRICITY DUE TO GEOMETRY 
C- 

AEGEO = YBAR+RM1 .-COS(THETA ) )-2.'YBAR-COS(THETA) 
C- 
C ECCENTRICITY DUE TO GEOMETRY 
C- 

BEGEO=R'(SINIX/R+PI/2.-THETA )-SIN(PI/2 . -THETA) ) 
C- 
C ECCENTRICITY DUE ONLY TO EXTENSICNAL EFFECTS 
C- 

EEXT=PL0AD*(SlN(PI/2.-THETA+X/R))"SIN(THETA-X/R)*X/( 
-WIDTH'THICK'« ESMC) 

C- 
C ECCENTRICITY DUE TO DEFLECTION 
c--. 

EDEFL=Y( 1 )*COSiTHETA-X/R) 
T0RCS=PL0ADMAEGEC+BEGLO+EDEFL+EEXT-TRACE) 
SH£AR=PLOADMCOS(X/R+P1/2.-THETA)-Y(1)/R'SINlPI/2. 
--THETA + X/R ) + PL0AD-((SIN(PJ/2. -THETA+X/R) ) ' i SIN{THETA- 
-X/R)/(WIDTH*THICK'ESMC)-X/(WIDTH"THICK'R'ESMC )"COS 
-(THETA-X/R) )+X/(WIDTH*THICK'ESMC-R)'SlN<THETA-X/R) 
-'C0S(PI/2. -THETA+X/R)) ) 
YPRIMEf2 ) = (R+Y(1 ) )'TORCS/(R*"2.'ESMC"WIDTH*THICK*YBAR) 
RETURN 
END 

PI 

■-NUMERICAL INTEGRATION OF SEG4 

SUBROUTINE FCN3(N.X,Y.YPRI ME) 
COMMON R, PLOAD. ESMC, WIDTH. THICK, YBAR, THETA, EADH. PI 

- , BOND 
DIMENSION Y(2) . YPRIMEI2). EII3I 
El(1) = ESMC*(1./12."THICK** 3.*WIDTH+WIDTH*THICK»(.5'THICK + BOND 

-12.  )*»2. ) 
El(2)=EADH*1./12.*THICK*-3»WIDTH 
El!3)=ESMC*(1../12.»WIDTH*THICK**3+WIDTH-THICK*(.5*THICK+B0ND/ 

-2. >**2. ) 
YPRIMEf1)=Y(2) 

00039600 
00039700 
00039300 
00039900 
00039950 
00039955 
00039960 
00040000 
•00040100 
0 304 0150 
03040150 
0 3040170 
03040500 
0 3040500 
00040700 
0 3040750 
03040755 
03040760 
03040800 
0304C900 
0 304 1 COO 
0 30 41100 
0 304 1200 
0 304 1250 
0 304 1260 
0304 1270 
0 304 1300 
0 304 1350 
03041360 
0004 1370 
0004 1400 
0004 1450 
C004 1460 
0 304 1-170 
00041500 
COQ4 1600 
C3041650 
C3041660 
0 304 1670 
0 304 1 700 
0 3041 COO 
C3041850 
0 304 i860 
0004 1370 
C9041880 
C304 1390 
000^2000 
C0042100 
C3042200 
C0042250 
C004226G 
C3042270 
00042300 
C0042400 
C0042500 
C0042600 
C0042700 
C0042800 
C0042900 
C0043000 
00043100 
CC0432C0 
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DEN = EI( ! )+EI(2)+EI(3 ) 0 3043300 
YPRIME(2)=PL0AD*( .5*THICK+B0ND/2.+Y(1 ) )/DEN 0 304 34CC 
RETURN 0 3043=00 
END 03043600 

C' 0 3043650 
C NUMERICAL INTEGRATION OF SEG5 03043560 
C' 03043670 

SUBROUTINE FCN41N.X.Y.YPRIME) 03043700 
COMMON R. PLOAD. ESMC . WIDTH. THICK, YBAR, THETA, EADH. PI         03043300 

-■ BOND 0-30d3i)00 
DIMENSION Y(2). YPRIME{2) 0^044000 
YPRIMEt 1 )=Y<2> 0304^100 
YPRIME(2)=PL0AD*(Y(1))/(ESMC*WIDTH*THICK**3./12.) 0 304^200 
RETURN 03044300 
END 0 3044400 
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b.  CONVERT 

The program CONVERT essentially performs the 

tedious calculations involved in computing the boundary 

conditions for the finite-element model.  Stresses dictated 

by the beam bending model are converted to equivalent point 

forces which are then applied to the finely meshed ends of 

the finite-element structure.  In converting the stress 

distribution from deformed to undeformed geometry the 

program insures that the model be maintained in equilibrium 

through the introduction of a correcting moment. 

The important parameters utilized in the routine 

are defined in the nomenclature section of the program. 

Frequent comment cards are intended to assist the user 

in the utilization of the program. 
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ccccc 
c 
c 
c 
ccccc 

00000 
0 0 
0 0 
0 0 
00000 

N N 
NN N 
N N N 
N NN 
N   N 

V V 
V V 
V V 
V V 
V 

EEEEE 
E 
EEE 
E 
EEEEE 

RRRRR 
R   R 
RRRRR 
R R 
R  R 

TTTTT 
T 
T 
T 
T 

STRESS TRANSFORMATION PROGRAM 

DEVELOPED BY:  RICHARD C. GIVLER 
UNIVERSITY OF DELAWARE 

OCT 78 - JAN 79 

C- 
C- 
C- 
C- 
C- 
C- 
C- 
C- 
C- 
C- 
C- 
c- 
c- 
c- 
c- 
c- 
c- 
c- 
c- 
c- 
c- 
c- 
c- 
c- 
SRESET FREE 

DIMENSION 20M(5). RES(5). PART(4), Z0MX(5i. RESB(5) 
-. RESX(5). RESY(5). ZOMA(5), Z0MB(5). BM0M(5), ZOMXB(S) 
-. RESXBI5), RESYB(5) 

C- 
C PARAMETERS AND NOMENCLATURE 
C- 
C MATERIAL THICKNESS 

THICK=.1 
C MATERIAL WIDTH 

WIDTH=1. 
C ROTATION OF LEFT HAND FACE FROM UNDEFORMED GEOMETRY (RAD) 

DUDSA=-.01642 
C ROTATION OF RIGHT HAND FACE FROM UNDEFORMED GEOMETRY (RAD) 

DUDSB=.008420 
C TOTAL MOMENT ON LEFT HANO FACE (IN. LBS.) 

T0TM0A=10.64 
C SHEAR   ON   LEFT   HAND   FACE 

SHEARA=132.6 
C TOTAL MOMENT ON RIGHT HAND FACE (IN. LBS.) 

TOTMOB=-1.968 
AREAsWIDTH'THICK 

C OUTSIDE RADIUS IN INCHES 
RADO=3.5*THICK 

C INSIDE RADIUS IN INCHES 
RADI=2.5*THICK 

C RADIUS OF CURVATURE OF CURVED MEMBERS 
. R = WIDTH*THICK/(ALOGf RADO/RADI)) 

C -DIFFERENCE BETWEEN NEUTRAL AXIS AND CENTROIDAL AXIS (IN.) 
YBAR=RADI+THICK/2.-R 

C ADHESIVE BOND THICKNESS IN INCHES 
B0ND=.03 

C------ANGLE SUBTENDED BY CURVED MEMBERS IN RADIANS 
THETA=ARCOS((5.»THICK-BOND)/(6."THICK)) 

Cr -TENSILE LOAD 
PLOAD=200. 

C- . 

00000004 
0C000005 
00000006 
00000007 
00000008 
03000010 
00000011 
00000012 
C0000013 
00000014 
00000015 
00000016 
C0000017 
00000018 
00000019 
C0000020 
00000030 
C0000031 
00000032 
00000033 
00000034 
030C0035 
00000036 
03000037 
00000100 
00000200 
00000300 
03000400 
00000420 
00000430 
00000440 
C0000470 
03000500 
C0000550 
00000600 
00000650 
03000700 
C0000750 
00000800 
00000850 
C3000900 
00000925 
00000950 
03000975 
00001000 
03001100 
00001150 
C3O01200 
03001250 
03001300 
C0OO135O 
00001400 
00001450 
C0001500 
00001550 
C0001600 
00001650 
00001700 
00001750 
00001800 
C0001850 
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00001852 
00001854 
00001870 
00001900 
00001970 
00002000 
00002010 
00002020 
00002100 
00002200 
00002300 
00002320 
00002400 
00002500 
00002600 
00002700 
00002800 
00002900 
00003000 
00003100 
00003200 
00003300 
00003400 
00003500 
00003600 
00003800 
00003900 
00004000 
00004100 
00004200 
00004300 
C0004400 
00004600 
00004700 
C0004800 
C0004900 
00005000 
00005200 
00005300 
00005400 
00005500 
00005600 
00005700 
C0005800 
00005900 
00006000 
00006200 
C0006300 
00006400 
00006500 
C0006600 
00006700 
CC00680O 
00006900 
00007000 
C0007100 
00007200 
C0007300 
C0007400 
C0007500 
C0007700 
00007900 

c- 

DEFtA=~.01547 

DEFLB=-.007872 

c- ********************************************************** 

c- 
c- ********************************************************** 

0 

H=R-RADI 
DO 100 N=1.5 

PART(1>=TOTMOA/(YBAR*AREA)*{R-H-R*AL0G(R-H)) 
-+PLOAD/AREA*COS(THETA+DUDSA)*H 
H=H-.02 
PART(2)=T0TM0A/(YBAR*AREA)*(R-H-R*AL0G(R-H)) 

'-+PLOAD/AREA*COS(THETA+DUOSA)*H 
RESlN)=PART(1)-PART(2) 

100 CONTINUE 

-----CALCULATION Or ACTUAL MOMENTS FROM THE STRE55 DISTRIBUTION 

H=R-RADI 
DO 200 ,M = 1 .5 

PART(3)=T0TM0A/(YBAR'AREA)*(-1.)»(.5*(R-H)*»2-2.*R*(R-H)+R*"2 
-'ALOG(R-H))+.5*PL0AD/AREA'C0S(THETA+DUDSA)*H**2 
H=H-.02 

PART(4)=T0TM0A/(YBAR*AREA)*(-1.)*(.5*(R-H)**2-2.*R*(R-H)+R*»2 
-*AL0G(R-H) )+.5*PL0AD/AREA*C0S(THETA+DUDSA)*H»*2 
ZOM<N)=PART(3)-PART(4) 

200 CONTINUE 

H=R-RADI-.01 
DO 300 N=1.5 
ZOMX(N)=ZQM(N)-RES(N)*H 
H=H-.02 

300 CONTINUE 

-----DioIHISUT ION THROUGH SPACE FROM THt DEFORMED GEOMETRY 

r. 
-----CALCULATION Or MOMX FOR INPUT INTO THE FINITE ELEMENT 

H=R-RADI-.01 
00 400 N=1.5 
ZOMA(N)=-RES(N)'*((H+0EFLA)*C0S(DUDSA)-H) 
ZOMX ( N ) = ZOMX ( N ) +ZOMA ( N ) 
HaH- .02 
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400 CONTINUE 00008000 
c- 00008100 
c- --CALCULATION OF FY AND FZ FOR INPUT INTO THE FINITE 00008200 ' 
c- --ELEMENT MODEL 00008300 
c- 00008400 

WRITE(S.25) 00008500 
25 FORMATI///////,6X.'BOUNDARY CONDITIONS FOR  LEFT HAND SEGMENT' ,/) 00008600 

WRITE(6.30) 00008700 
30 FORMAT(/ , 4X,'NODE'.6X,'FY',13X.'FZ'.12X,'MOMX' , // ) 00008800 

DO 500 N=1.5 00008900 
RESX(N) = -RES(N)*C0S(THETA+OUDSA)- SHEARA/5.»SIN ( THETA) 00009000 
RESY(N)=-RES(N)*SIN(THETA+DUDSA)+SHEARA/5.*C0S(THETA) 00009100 
WRITE(S,2) N. RESX(N), RESY(N), -ZOMX(N) 00009200 

2 F0RMAT(5X.F2.0.3X.3(E10.4.5X),/) 00009300 
500 CONTINUE 00009400 

c- 00009500 
c- 00009600 
c- ************ ************ ********************************** OOOC9700 
c- 00009800 c- --RESOLVING STRESS DISTRIBUTION ON RIGHT HAND FACE 00009900 
c- 00010000 
c- * * * *********t******************************************** 00010100 
c- 00010200 
c- 00010300 
c- 00010400 c- --CALCULATION OF RESULTANT POINT FORCES FROM THE STRESS 00010500 
c- --DISTRIBUTION 00010600 
c- 00010700 

H=THICK/2. 00010800 
DO 1000 N=1.5 00010900 
PART(1 )=- .5»T0TM0B*H*»2/(1 ./12.»WIDTH*THICK*-3) + PL0AD/AREA*H 00011000 
H=H-.02 00011100 
PART(2) = -.5*T0TM0B*H**2/(1 ./12.»WIDTH*THICK**3 )+PLOAD/AREA*H 00011200 
RESB(NI=PART(1)-PART(2) 00011300 

1000 CONTINUE 00011500 
c- 00011600 
c- --CALCULATION OF ACTUAL MOMENTS FROM THE STRESS 00011700 
c- --DISTRIBUTION 00011800 
c- 00011900 

H=THICK/2. 00012000 
DO 1100 N=1 ,5                   ,- 00012100 
PART(3) = 1 ./3. *(T0TIV!0B)*H**3/(1 . /1 2 . *WI DTH-THICK* *3 ) C0O1220O 

--.5*PL0AD/AREA*H**2 COO 12300 
H=H-.02 C0012350 
PART(4) = 1 ./3.*(T0TM0B)*H**3/(1./12.*WIDTH»THICK**3) 00012400 

--.5*PL0AD/AREA*H*-2 00012500 
BM0M(N)=PART(3)-PART(4) C0012600 

1 100 CONTINUE CO012800 
c- 00012900 
c- --CALCULATION OF CORRECTION MOMENT DUE TO THE CO013000 
c- --REPRESENTATION OF THE STRESS DISTRIBUTION BY POINT C0013100 
c- --FORCES 00013200 
c- C0013300 

H=THICK/2. -.01 00013400 
DO 1200 N=1.5 00013500 
ZOMXB(N)=BMOM(N)+RESB(N)*H C0013600 
H=H-.02 00013750 

1200 CONTINUE 03013800 
c- 00013900 
c- --CALCULATION OF THE MOMENT DUE TO TRANSLATING THE STRESS 00014000 
c- --DISTRIBUTION FROM DEFORMED TO UNDEFORMED GEOMETRY C0014100 
c- C0014200 
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c  
C CALCULATION OF MOMENT MX FOR INPUT INTO THE FINITE 
C ELEMENT   MODEL 
C  

H=THICK/2.-.01 
DO 1300 N=1,5 
ZOMB(N)=RESB!N)*((H-DEFLB)*COS(DUDSB)-H) 
ZOMXB!N)=ZOMXB(N)+Z0MB(N) 
H=H-.02 

1300 CONTINUE 
C  
C CALCULATION OF FY AND FZ FOR INPUT INTO THE FINITE 
C ELEMENT MODEL 
C  

WRITE!6.40) 
40 FORMATI//////.10X.'BONDARY CONDITIONS FOR SEGB',/) 

WRITE16.45) 
^45 FORMAT!/,4X.'NODE'.6X,'FY'.13X,'FZ',12X,'MOMX',//) 

DO 1400 N=1.5 
RESXB! N)=RESB(N)*COS(DUDSB ) 
RESYB(N)=RESB(N)*SIN(0U0S8) 
WRITE16.20) N. RESXB(N). RESYB(N). ZOMXB(N) 

20 FORMAT. ( 5X . F2.0, 3X, 3 ( E10.4. 5X). / > 
1400 CONTINUE 

END 

0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
000 1 
0001 
0001 
0001 
0001 
C001 
0001 
0001 
0001 
0001 
0001 

4200 
4400 
4500 
4600 
4700 
4800 
4900 
5100 
5200 
5300 
5400 
5500 
5600 
5700 
5800 
5900 
6000 
6100 
6200 
6300 
6400 
6500 
6600 
6700 
6800 
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SUBROUTINE DVERK 

DVERK S  

FUNCTION 

USAGE 
PARAMETERS   N 

FCN 

(N. FCN.X , Y.XENO.TOL.I NO,C.NW.W.1 ER) 

•LIBRARY 3- 

SOLUTI 
DIFF 
DY/D 
A RU 
AND 

CALL 0 
NUMBER 
NAME 0 

( INP 
THE 

BY 
FO 

XEND 

TOL 

ON OF A SYSTEM OF FIRST OROER ORDINARY 
ERENTIAL EQUATIONS OF THE FORM 
X = F(X.Y) WITH INITIAL CONDITIONS. 
NGE-KUTTA METHOD BASED ON VERNERS FIFTH 
SIXTH ORDER PAIR OF FORMULAS IS USED. 
VERKIN.FCN.X.Y.XENO.TOL.IND.C.NW,W.I ER) 
OF EQUATIONS. (INPUT ) 

F SUBROUTINE FOR EVALUATING FUNCTIONS. 
UT) 
SUBROUTINE ITSELF MUST ALSO BE PROVIDED 
THE USER AND IT SHOULD BE OF THE 

LLOWING FORM 
SUBROUTINE FCN(N,X.Y.YPRIME) 
DIMENSION Y(N) .YPRIME(N) 

FCN 
GI 
IS 
RE 

FCN 
TH 
MU 

INDEPE 
ON I 
ON 0 

ER 
OR 

DEPEND 
( INP 
ON I 

VA 
ON 0 

AN 
ER 
CR 

VALUE 
( INP 
XEND 

X . 
TOLERA 

THE 
OF 
GL 
MA 
MO 
OF 
ES 

IN T 
ER 

WH 
YT 
Y( 
FO 
OT 

SHOULD 
VEN N. 
THE F 

SPECT 
MUST A 
E CALL 
ST NOT 
NDENT 
NPUT. 
UTPUT. 
ROR CO 
IPTION 
ENT VA 
UT AND 
NPUT. 
LUES. 
UTPUT. 
APPRO 

ROR CO 
IPTION 
OF X A 
UT) 
MAY B 

EVALUATE YPRIME( 1 ) YPRIME« N) 
X. AND Y(1 ) YIN) .  YPRIMEl I ) 
IRST DERIVATIVE OF Y(I) WITH 
TO X. 
PPEAR IN AN EXTERNAL STATEMENT IN 
ING PROGRAM AND N.X.YdJ Y(N) 
BE ALTERED BY FCN. 

VARIABLE. I INPUT AND OUTPUT) 
X SUPPLIES THE INITIAL VALUE. 
X IS REPLACED WITH XEND UNLESS 

NDITIONS ARISE.  SEE THE DES- 
OF PARAMETER IND. 

RIABLES. VECTOR OF LENGTH N. 
OUTPUT) 

Y(1) Y(N) SUPPLY INITIAL 

Yd ) Y(N) ARE REPLACED WITH 
XIMATE SOLUTION AT XEND UNLESS 
NDITIONS ARISE.  SEE THE DES- 
OF PARAMETER IND. 

T WHICH SOLUTION IS DESIRED. 

E LESS THAN THE INITIAL VALUE OF 

NCE FOR ERROR CONTROL. (INPUT) 
SUBROUTINE ATTEMPTS TO CONTROL A NORM 
THE LOCAL ERROR IN SUCH A WAY THAT THE 

OBAL ERROR IS PROPORTIONAL TO TOL. 
KING TOL SMALLER IMPROVES ACCURACY AND 
RE THAN ONE RUN. WITH DIFFERENT VALUES 
TOL. CAN BE USED IN AN ATTEMPT TO 

TIMATE THE GLOBAL ERROR. 
HE DEFAULT CASE (IND=1). THE GLOBAL . 
ROR IS 

MAX(ABS(E( 1 ) ) , . . . ,ABS(E(N) ) ) 
ERE E(K) = (Y(K)-YT(K) )/MAX( 1.A3S(Y(K))) 
(K) IS THE TRUE SOLUTION. AND 
K) IS THE COMPUTED SOLUTION AT XEND. 
R K=1 .2 N. 
HER ERROR CONTROL OPTIONS ARE AVAILABLE 

D-/EK0010 
D7EK0020 

■DVEK0030 
DVEK0C40 
D/EKC050 
DVEK0060 
D^EKOOTO 
D./EK0030 
0;EKG030 
DVEK0100 
D,/EK01 10 
D/EK0120 
DVEK0130 
C/EK0140 
CVEK0150 
C/EK0150 
D«/EK0170 
0i/EK01S0 
DyEK0190 
DVEK0200 
D</EK0210 
C/EK0220 
Ci/EK0230 
D/EK0240 
C/EK0250 
Cv/EK0260 
C1/EK0270 
D1/EK0280 
DVEK0290 
Di/EK0300 
DJEK0310 
Dv'EK0320 
C/EK0330 
Du'EK0340 
C</EK0350 
D7EK0360 
D^EK0370 
CWEKC330 
Ci/EK0390 
D»'EK0400 
Di/EK0410 
Ci'EKC420 
Ci/EK0430 
CVEKQ440 
C\/EK0450 
C\/EKÜ460 
C\/EKC470 
CVEKC480 
C</EK0490 
DVEKC500 
CVEK0510 
CVEK0520 
CVEK0530 
CVEK0540 
CVEK0550 
CVEK0560 
CVEK0570 
CVEK0580 
CVEK0590 
CVEK0600 
CVEK0610 
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C SEE THE DESCRIPTION OF PARAMETERS IND AND D/EK0520 
C C BELOW. D7EK0630 
C IND    - INDICATOR. (INPUT AND OUTPUT) D7EK0640 
C ON INITIAL ENTRY IND MUST BE SET EQUAL TO D/EKC650 
C EITHER 1 08 2. D^EK0660 
C IND = 1 CAUSES ALL DEFAULT OPTIONS TO BE D/EK0670 
C USED AND ELIMINATES THE NEED TO SET D/EK0680 
C SPECIFIC VALUES IN THE COMMUNICATIONS D/EK0690 
C VECTOR C. D/EK0700 
C IND = 2 ALLOWS OPTIONS TO BE SELECTED.  IN D/EK0710 
C THIS CASE. THE FIRST 9 COMPONENTS CF C D/EK0720 
C MUST BE INITIALIZED TO SELECT OPTIONS AS D/EK073C 
C DESCRIBED BELOW. D/EK0740 
C THE SUBROUTINE WILL NORMALLY RETURN WITH DVEKC750 
C IND = 3. HAVING REPLACED THE INITIAL VALUES D./EK0760 
C OF X AND Y WITH. RESPECTIVELY, THE VALUE Q/EK0770 
C XEND AND AN APPROXIMATION TO Y AT XEND. Dv'EK0780 
C THE SUBROUTINE CAN BE CALLED REPEATEDLY WITH D;EK0790 
C NEW VALUES OF XEND WITHOUT CHANGING ANY C/EKC800 
C OF THE OTHER PARAMETERS. DJ'EK0810 
C THREE ERROR RETURNS ARE ALSO POSSIBLE. IN D»'EK0820 
C WHICH CASE X AND Y WILL BE THE MOST D./EK0830 
C    . RECENTLY ACCEPTED VALUES. DyEK0840 
C IND = -3 INDICATES THAT THE SUBROUTINE WAS 0./EK0850 
C UNABLE TO SATISFY THE ERROR REQUIREMENT. D»'EK0860 
C THIS MAY MEAN THAT TOL IS TOO SMALL. DVEK0370 
C    .  •   . IND = -2 INDICATES THAT THE VALUE OF HMIN 0,/EKOSSO 
C ' (MINIMUM STEP-SIZE) IS GREATER THAN HMAX C7EKG390 
C ' (MAXIMUM STEP-SIZE). WHICH PROBABLY MEANS DVEK0900 
C THAT THE REQUESTED TOL (WHICH IS USED IN C/EKC910 
C THE CALCULATION OF HMIN) IS TOO SMALL. C/EKC920 
C IND = -1 INDICATES THAT THE ALLOWED MAX i MUM D7EK0930 
C ' NUMBER OF FCN EVALUATIONS HAS BEEN CWEK0940 
C EXCEEDED.  THIS CAN ONLY OCCUR IF OPTION Ci/EKC950 
C C(7). AS DESCRIBED BELOW. HAS BEEN USED. CVEK0960 
C C      - COMMUNICATIONS VECTOR OF LENGTH 24. (INPUT IF Di/EK0970 
C       . IND.NE.1. AND OUTPUT). DVEK0980 
C C IS USED TO SELECT OPTIONS AND TO RETAIN 0^X0990 
C •■ INFORMATION BETWEEN CALLS.  THE USER NEED CVEK1C00 
C NOT BE CONCERNED WITH THE FOLLOWING CVEK1010 
C DESCRIPTION OF THE ELEMENTS OF C WHEN Dv'EKI020 
C DEFAULT OPTIONS ARE USED (IND=1). C7EK1030 
C HOWEVER. WHEN IT IS DESIRED TO USE IND = 2 CVEK1040 
C AND SELECT OPTIONS. A BASIC UNDERSTANDING Cv'EK1050 
C OF DVERK IS REQUIRED.  THE FOLLOWING CVEK1060 
C PARAGRAPH DESCRIBES. BRIEFLY. THE BASIC Ci/El<1070 
C TERMS.  FOR MORE DETAILS. SEE THE CVEK1C80 
C REFERENCE. Cv'EKl090 
C DVERK ADVANCES THE INDEPENDENT VARIABLE CVEK1100 
C X ONE STEP AT A TIME UNTIL XEND IS CVEK1110 
C REACHED.  THE SOLUTION IS COMPUTED AT DVEK1120 
C XTRIAL = X+HTRJAL ALONG WITH AN ERROR CVEK1130 
C ESTIMATE EST.  IF EST IS LESS THAN OR CVEK1140 
C EQUAL TO TOL (SUCCESSFUL STEP). THE STEP CVEK1150 
C IS- ACCEPTED AND X IS ADVANCED TO XTRIAL. CVEK1160 
C IF EST IS GREATER THAN TOL (FAILURE) CVEK1I70 
C HTRIAL IS ADJUSTED AND THE SOLUTION IS . CVEK1180 
C RECOMPUTED.  HMAG = ABS(HTRIAL) IS NEVER CVEK1190 
C ALLOWED TO EXCEED HMAX NOR IS IT ALLOWED CVEK1200 
C TO BECOME SMALLER THAN HMIN.  THE FIRST DVEK1210 
C  • TRIAL STEP IS HSTART.  DURING THE DVEK1220 
C COMPUTATION. A COUNTER (C(23)) IS CVEK1230 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

INCREMENTED EACH TIME A TRIAL STEP FAILS  D/EK1240 
TO PROVIDE A SOLUTION SATISFYING THE ERRORD/EK1250 

CM 

C(2) 

C(3) 

TOLERANCE.  ANOTHER COUNTER (C(22)) IS 
USED TO RECORD THE NUMBER OF SUCCESSFUL 
STEPS.  AFTER A SUCCESSFUL STEP. C(23) IS 
SET TO ZERO. 

OPTIONS.  IF THE SUBROUTINE IS ENTERED WITH 
IND=2. THE FIRST 9 COMPONENTS OF THE 
COMMUNICATIONS VECTOR MUST BE INITIALIZED 
BY THE USER.  NORMALLY THIS IS DONE BY 
FIRST SETTING THEM ALL 
THOSE CORRESPONDING TO 
ARE MADE NON-ZERO. 

ERROR CONTROL INDICATOR. 
THE SUBROUTINE ATTEMPTS TO CONTROL A NORM 
OF THE LOCAL ERROR IN SUCH A WAY THAT THE 
GLOBAL ERROR IS PROPORTIONAL TO TOL. 
THE DEFINITION OF GLOBAL ERROR FOR THE 
DEFAULT CASE (IND=1) IS GIVEN IN THE 
DESCRIPTION OF PARAMETER TOL.  THE DEFAULT 
WEIGHTS ARE 1/MAXI 1 ,A8S(YIK ) ) ) .  WHEN IND = I 
IS USED. THE WEIGHTS ARE DETERMINED 

TO ZERO. AND THEN 
PARTICULAR OPTIONS 

ACCORDING 
IF CM ) = 1 

IF CM )=2 

IF CM ) = 3 

TO THE VALUE OF 
THE WEIGHTS ARE 
(ABSOLUTE ERROR 
THE WEIGHTS ARE 
FOR K=1 .2 N 
(RELATIVE ERROR 
THE WEIGHTS ARE 
1/MAXIA8SICI2) ) , 
FOR K=1 , 2 N. 
(RELATIVE ERROR 

CM). 
1 
CONTROL) 
1/ABStY(K] 

CONTROL) 

A3S(Y(K))) 

CONTROL. UNLESS 
ABSIY(K)) IS LESS THAN THE FLOOR 
VALUE.ABS(C(2))) 

IF CM)=4 THE WEIGHTS ARE 
1/MAXIABS(C(K+30) ) ,ABS!Y(K) ) ) 
FGR K=1 . 2 N. 
(HERE INDIVIDUAL FLOOR VALUES 
ARE USED) 
IN THiS CASE.  THE DIMENSION OF C 
'.i'JST BE GREATER THAN OR EOUAL TO 
N + 30 AND CI31). Cf32 ) CIN + 30) 
MUST BE INITIALIZED BY THE USER. 

IF CM)=5 THE WEIGHTS ARE 1/ABS I C ( K + 30 ) ) 
FOR K=1 ,2 N. 
IN THIS CASE.  THE DIMENSION OF C 
MUST BE GREATER THAN OR EOUAL TO 
NKJO AND CI31). CI32) C(N + 30) 
vUST BE INITIALIZED BY THE USER. 

FOR ALL OTi'ER VALUES OF CM). INCLUDING 
CM)=0 THE DEFAULT VALUES OF 

THE WEIGHTS ARE TAKEN TO BE 
1/MAXI 1 .ABS(Y(K) ) ) 
I'OR K=1 ,2 N. 

FLOOR VALUE.  USED WHEN THE INDICATOR CM) 
HAS THE VALUE 3. 

HMIN SPECIFICATION.  IF NOT ZERO. THE SUB- 
ROUTINE CHOOSES HMIN TO BE ABS(C(3)). 
OTHERWISE IT USES THE DEFAULT VALUE 
10:'MAX( DWARF . RREB*MAX(N0RM( YJ/TOL. ABS(X ) ) ) 
WHERE DWARF IS A VERY SMALL POSITIVE MACHINEDVEK1840 
NUMBER AND RREB IS THE RELATIVE ROUNDOFF    CVEK1850 

D/EK1260 
D/EK1270 
DVEK1280 
D/EK1290 
D;EK1300 
D./EK1310 
DVEK1320 
DVEK1330 
D./EK1340 
D>/EK1350 
D;EK1360 
D;EK1370 
D^EK1330 
D,/EK1390 
Di/EK1400 
D7EK1410 
Dl/EK1420 
D7EK1430 
DVEK1440 
Cv'EK1450 
DVEK1460 
DVEK1470 
DVEK1480 
D</EK1490 
DVEK15C0 
DVEK1510 
Di/EK1520 
D./EK1530 
D^EK1540 
DVEK1550 
Di/EK1560 
D»/EK1570 
C^EK1580 
DVEK1590 
D4/EK1600 
Di/EK1610 
CV'EK1620 

Dy/EK1630 
D\/EK1640 
CVEK1650 
C\/EK1660 
CVEK1670 
C\/EK1SS0 
C\/EK1690 
CVEK17Q0 
CVEK1710 
CVEK1720 
CVEK1730 
CVEK1740 
Cv'EK1~50 
CVEK1760 
CVEK1770 
CVEK1780 
CVEK1790 
CVEK1800 
C>/EK1810 
CVEK1820 
CVEK1830 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

C(4) 

C(5) 

C(6) 

cm 

C(8) 

C(9) 

iRROR BOUND. 
HSTART SPECIFICATION.  IF NOT ZERO. THE SUB- 

ROUTINE WILL USE AN INITIAL HMAG EQUAL TO 
ABS(C(4)). EXCEPT OF COURSE FOR THE RE- 
STRICTIONS IMPOSED BY HMIN AND HMAX. 
OTHERWISE IT USES THE DEFAULT VALUE 

HMAX-(TOL)'- i 1/6) . 
SCALE SPECIFICATION.  THIS IS INTENDED TO BE 

A MEASURE OF THE SCALE OF THE PROBLEM. 
LARGER VALUES OF SCALE TEND TO MAKE THE 
METHOD MORE RELIABLE. FIRST BY POSSIBLY RE- 
STRICTING HMAX (AS DESCRIBED BELOW) AND 
SECOND, BY TIGHTENING THE ACCEPTANCE 
REQUIREMENT.  IF C(5) IS ZERO. A DEFAULT 
VALUE OF 1 IS USED. FOR LINEAR HOMOGENEOUS 
PROBLEMS WITH CONSTANT COEFFICIENTS. AN 
APPROPRIATE VALUE FOR SCALE IS A NORM OF 
THE ASSOCIATED MATRIX. FOR OTHER PROBLEMS. 
AN APPROXIMATION TO AN AVERAGE VALUE OF' A 
NORM OF THE JACOBIAN ALONG THE TRAJEC- 
TORY MAY BE APPROPRIATE. 

HMAX SPECIFICATION.  FOUR CASES ARE POSSIBLE. 
IF C(6).NE.O AND C(5).NE.O. HMAX IS TAKEN 

TO BE MIN(ABS(C(6)) 
IF C(6) .NE.O ANO C(5) 

TO BE ABSlC(6)). 
IF C(6) .EQ.O AND C(5) 

TO BE 2/ABS(C(5)). 
IF C(6) .EQ.O AND C(5) 

A DEFAULT VALUE OF 2. 
MAXIMUM NUM5EP OF FUNCTION EVALUATIONS 

NOT ZERO. AN ERROR RETURN WITH IND = -1 
WILL BE CAUSED WHEN THE NUMBER OF FUNCTION 
EVALUATIONS EXCEEDS ABS(C(7)). 

INTERRUPT NUMBER 1 . IF NOT ZERO. THE SUB- 
ROUTINE WILL INTERRUPT THE CALCULATIONS 
AFTER IT HAS CHOSEN ITS PRELIMINARY VALUE 
OF HMAG. AND UUST BEFORE CHOOSING HTRIAL 
AND XTRIAL IN PREPARATION FOR TAKING A STEP Dv'EK2240 
(HTRIAL MAY DIFFER FROM HMAG IN SIGN. AND 
MAY REQUIRE ADJUSTMENT IF XEND IS NEAR). 
THE SUBROUTINE RETURNS WITH IND = 4. AND 
WILL RESUME CALCULATION AT THE POINT OF 
INTERRUPTION IF  RE-ENTERED WITH IND = 4. 

INTERRUPT NUMBER 2.  IF NOT ZERO. THE SUB- 
ROUTINE WILL INTERRUPT THE CALCULATIONS 
IMMEDIATELY AFTER IT HAS DECIDED WHETHER OR DVEK2320 
NOT TO ACCEPT THE RESULT OF THE MOST RECENT Cv/EK2330 

,2/ABS(C(5i)). 
.EQ.O, HMAX IS TAKEN 

.NE.O. HMAX IS TAKEN 

EQ.O. HMAX IS GIVEN 

IF 

D/EK1860 
D/EK.1870 
D7EK1880 
D;EK1890 
DVEK1900 
D>/EK1910 
DVEK1920 
DVEX1930 
DVEK1940 
D.'EK1950 
0;EK1960 
D./EK1970 
DVEK1930 
DVEK1990 
DVEK2000 
D/EK2010 
0VEK2020 
D;EK2030 
D./EK2040 
D./EK2050 
D»/EK2C50 
D>/EK2070 
D./EK2C8Q 
Di/EK2090 
D</EK2100 
DVEK2110 
DVEK2120 
D«/EK2130 
DVEK2140 
0(/EK2!50 
Dv/EK2160 
DVEK2170 
C^EK21S0 
C\/EK2190 
C*/EK2200 
Di/EK2210 
D«/EK2220 
□ i/EK2230 

D,/EK2250 
D-/EK2260 
CVEK2270 
CVEX2280 
CVEK2290 
C\/EK2300 
CVEK2310 

NW 

TRIAL STEP. WITH IND = 5 IF IT PLANS TO 
ACCEPT. OR IND = 6 IF IT PLANS TO REJECT. 
Y(*) IS THE PREVIOUSLY ACCEPTED RESULT. 
WHILE W(*,9! IS THE NEWLY COMPUTED TRIAL 
VALUE. AND WC.2) IS THE UNWEIGHTED ERROR 
ESTIMATE VECTOR. THE SUBROUTINE WILL RESUME CVEK2390 
CALCULATIONS AT THE POINT OF INTERRUPTION CVEK2400 
ON RE-ENTRY WITH IND = 5 OR 6. C\/EK2410 
IND MAY BE CHANGED BY THE USER IN ORDER TO DVEK2420 
FORCE ACCEPTANCE OF A STEP (BY CHANGING IND DVEK2430 
FROM 6 TO 5) THAT WOULD OTHERWISE BE 
REJECTED. OR VICE VERSA. 

THc FIRST DIMENSION OF W AS IT APPEARS IN 
CALLING PROGRAM. (INPUT) 

D</EK2340 
CVEK2350 
C»'EK23S0 
Ci/EK2370 
CVEK2330 

CVEK2440 
CVEK2450 

THE CVEK2460 
CVEK2470 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c- 
c 
c. 

IER 

NW MUST BE G REATE 
WORKSPAC E MATRIX. 

THE FIRST DIMEN 
SECOND MUST BE 

ERROR PARAMETER. 
TERMINAL ERRORS 

IER = 129. NW I 
THAN 

IER = 130. IND 
IER = 131 . XEND 

PREV 
THE 

IER = 132. THE 
OPTI 
ONE 
IS Z 

R THAN OR EQUAL TO N. 

SI ON OF W MUST BE NW AND THE 
GREATER THAN OR EQUAL TO 9. 
(OUTPUT) 

S LESS THAN N OR TOL IS LESS 
OR EQUAL TO ZERO. 

IS NOT IN THE RANGE 1 TO 6. 
HAS NOT BEEN CHANGED FROM 
IOUS CALL OR X IS NOT SET TO 
PREVIOUS XEND VALUE. 
RELATIVE ERROR CONTROL 
ON (C(1)=2) WAS SELECTED AND 
OF THE SOLUTION COMPONENTS 
ERO. 

PRECISION 
REOD. IMSL ROUTINES 
LANGUAGE 

SINGLE 
UERTST 
FORTRAN 

LATEST REVISION 

. INTEGER 
INTEGER 
RE4L 
REAL 

1 
REAL 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

- DECEMBER 15. 
BGH 

1976 

N.IND.NW.K 
IER 
X. YIN) .XEND.TOL.Ct1 ) . W(f 
ZERO.ONE,TWO.THREE.FOUR 

W . 9 ) . 
FIVE. 

TEMP 
SEVEN TEN.HALF,P9 

C2D3.C5D6.C1D6.C1D15.C2D96 
.REPS.RTOL 
0/.0NE/1 .0/.TWO/2.0/.THREE/3.0/ 
0/. FIVE/5.0/.SEVEN/7.0/ 

P9/0.9/ 

C4D15 
RK(39) 
ZERO/O 
FOUR/4 
TEN/10.0/.HALF/0.5/ 
C4D15/.26666666567/ 
C2D3/.66666666657/ 
C5D6/.83332333333/ 
C1D6/.16666666667/ 
C1D15/.66666666667E-1/ 
C2D96/120.42729108/ 
REPS/01301000000000000/ 
RTOL/01631000000000000/ 
RK( 1 )/. 16666666667E + 00/ 
RK< 21/.53333333333E-01/ 
RK( 3)/.21333333333E+00/ 
RK( 4)/.83233333333E + 00/ 
RK( 5)/ .26666666667E+01/ 
RK( 6)/.25000000000E+01/ 
RK( 7)/.2578l250000E+01/ 
RK( 81/.91666566667E+01/ 
RK( 9 1/.66406250000E+01/ 
RK( 10)/.88541f>66067E+00/ 
RK(11 )/ .2400000000UE + 01/ 
RK(12 1/.800000QOOOGE+01/ 
RK( 13)/. 65604575163E + 01/ 
RK(14 1/.3C555555556E+00/ 
RK(15)/.34509803922E+00/ 
RK(16)/.55086666667E+00/ 
RK(17)/.16533333333E+01/ 
RK!18)/.94553823529E+00/ 
RK(19)/.32400000000E+00/ 
RK(20)/.23373323529E+00/ 
RK(21)/.2C354651163E+01/ 
RK(22)/.69767441060E+01/ 
RK(23)/.56481798146E+01/ 

D/EK2480 
D/EK2490 
D7EK2500 
D/EK2510 
D/EK2520 
D/EK2530 
D/EK2540 
D;EK2550 
D/EK2560 
D/EK2570 
DVEK2580 
DVEK2590 
D/EK26C0 
D/EK2510 
D;EK2620 
D/EK2630 
0yEK2540 
DVEK2650 
D^EK2660 
•DVEK2670 
DVEK2680 
DVEK2690 
C/EK2700 
DyEK2710 
D/EK272C 
.D/EK2730 
D»/EK2740 
D/EK2750 
Dv'EK2760 
Dv'EK2770 
D/EK2780 
Ov'EK2790 
Di/EK2800 
Dv;EK2810 
07EK2820 
C>/£K2830 
C;EK2840 
D\/EK2850 
Cv'EK2860 
C1/EK2370 
Cv'EK2S80 
C</EK2890 
DVEK2900 
C\/EK2910 
C'u'EK2920 
CVEK2930 
C\/EK2940 
CVEK2950 
CVEK2960 
CVEK2970 
CVEK2980 
CVEK2990 
CVEK3000 
DVEK3010 
CVEK3020 
CVEK3030 
CVEK3C40 
CVEK3050 
CVEK3060 
CVEK3070 
CVEK3030 
CVEK3090 
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DATA RK(24)/ 13733156761E+OO/ DVEK3100 
DATA RK(25)/ 28630226610E+00/ 0;EK3110 
DATA RK(26)/ 14417S55672E+00/ D/EK3120 
DATA RM27)/ 75O0C00C0OGE-O1/ D;EK3130 
DATA RK(23)/ 38992R69875E+00/ D./EK3140 
DATA RK(29)7 31944444444E+00/ D;EK3150 
DATA RK(30)/ 13503836317E+00/ D;EK3160 
DATA RK(31)/ 1C783298827E-01/ D;EK3170 

DATA RK(32)/ 69805194805E-01/ D/EK31SC 
DATA RK(33)/ 6250C000000E-02/ D/EK3190 
DATA RK(34!/ 6S630124777E-02/ D/EK3200 
DATA RK(35)/ 69444-144444E-02/ D^EK3210 
DATA RK(36)/ 61381074169E-02/ DVEK3220 
DATA RK137)/ 68181813132E-01/ D/EK3230 
DATA RK(38>/ 10783298827E-01/ D^LK3240 
DATA RK(39)/ 69805194805E-01/ 

BEGIN INITIALIZATION. PARAMETER 
CHECKING. INTERRUPT RE-ENTRIES 

D;EK3250 

D;EK32OO 
D;EK3270 
D;EK3280 

IER = 0 
ABORT IF IND OUT OF RANGE 1 TO 6 

DVEK3290 
OVEK3300 

IF (IND. LT.1.OR.IND.GT.6) GO TO 2S0 Du'EK3310 
CASES - INITIAL ENTRY, NORMAL D</EK3320 

RE-ENTRY, INTERRUPT RE-ENTRIES 0„'EK3330 
GO TO (5 ,5,40.1/45.265.265) . IND D^EK3340 

CASE 1 - INITIAL ENTRY (IND .EO. 1 DVEK3350 
OR 2) ABORT IF N.GT.NW OR TOL. LE.O DVEK33S0 

DVEK3370 
5 IF (N.GT .NW.OR.TOL.LE.ZERO) GO TO 295 Di/EK33S0 

IF (IND. EQ.2) GO TO 15 DVEK3390 
INITIAL ENTRY WITHOUT OPTIONS (IND C/EK34C0 

" .EQ. 1 ) SET C(1 ) TO C(9) EQUAL TO DVEK3410 
0 D«'EK3420 

DO 10 K= 1 ,9 CVEK3430 
C(K) = ZERO Di/EK3440 

10 CONTINUE DVEK3450 
GO TO 30 

SUMMARY OF THE COMPONENTS OF THE 
COMMUNICATIONS VECTOR 
PRESCRIBED AT THE OPTION 

.- OF THE USER 

C( 1 ) ERROR CONTROL INDICATOR 
C(2) FLOOR VALUE 
C(3) HMIN SPECIFICATION 
C(4) HSTART SPECIFICATION 
C!5) SCALE SPECIFICATION 
C!5) HMAX SPECIFICATION 
C(7) MAX NO OF FCN EVALS 
C(8) INTERRUPT NO 1 
C(9) INTERRUPT NO 2: 

DETERMINED BY THE PROGRAM 

D\/EK3460 
Cv/EK3470 
Cv'EK3480 
D>/EK3490 
CVEK3500 
CVEK35 10 
DVEK3520 
CVEK3530 
C\/EK3540 
DVEK3550 
CvEK3560 
Ci/EK3570 
Ci/EK3530 
CVEK3590 
CVEK3600 
CVEK3610 
CVEK3620 
CVEK3630 

C(10) RRE3(REL ROUNDOFF ERROR BND) C^/EK3640 
C(11) DWARF (VERY SMALL MACH NC) CtfEK3550 
C(12) WEIGHTED NORM Y CVEK3660 
C(13) HMIN D>/EK3670 
C( 14) 
CMS) 
C ( 1 6 ) 
C( 17) 

HMAG 
SCALE 
HMAX 
XTRIAL 

WEK 
CVEK 
Ci/EK 
C\/EK 

680 
3690 
37C0 
3710 
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c 
c 
c 
c 
c 
c 
c 
c 
c 

CMS) HTRIAL 
CM9) EST 
C(20) PREVIOUS XEND 
C(21 ) FLAG FOR XEND 
C(22) NO OF SUCCESSFUL 
C(23l NO OF SUCCESSIVE 
C<24) NO OF FCN EVALS 
IF C(1 ) = 4 OR 5, C< 31 ) 
C(N+30) ARE FLOOR VAL 

15 CONTINUE 

DVEX2720 
D7EK3730 
D7EK3740 
DVEK3750 

STEPS D7EK3760 
FAILURES DVEK3770 

DVEK3780 
■C(32).... DVEK3790 
UES DVEK3800 

DVEK3S10 
S (IND .EQ. D/EK3S20 



Appendix D 

Material Property Data 

It was necessary to perform a series of elastic 

modulus determination tests to characterize this adherent 

material.  Slight variations in material properties can 

be evident in molding compounds even manufactured by the 

same supplier.  In a separate, extensive study concerning 

material property data, Taggart reported the elastic 
g 

modulus of SMC-25 to be 2.1x10 psi and the results shown 

in Table 4 are in close agreement. 

Table 4 

Specimen # 

SPEC1 

SPEC2 

SPEC3 

Modulus (PSI) 

2.21xl05 

2.26xl06 

2.18xl06 

Plate 6 shows a typical test specimen used for modulus 

determination.  The data for these tests may be found 

on the following pages. 
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PLATE 6:  Tensile Coupons for Modulus Determination 
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